On unicyclic graphs of metric dimension~$2$
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 216-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

A metric basis $S$ of a graph $G$ is the subset of vertices of minimum cardinality such that all other vertices are uniquely determined by their distances to the vertices in $S$. The metric dimension of a graph $G$ is the cardinality of the subset $S$. A unicyclic graph is a graph containing exactly one cycle. The construction of a knitting unicyclic graph is introduced. Using this construction all unicyclic graphs with two main vertices and metric dimensions $2$ are characterized.
Keywords: metric dimensions
Mots-clés : distance, unicyclic graph.
@article{ADM_2017_23_2_a3,
     author = {Marharyta Dudenko and Bogdana Oliynyk},
     title = {On unicyclic graphs of metric dimension~$2$},
     journal = {Algebra and discrete mathematics},
     pages = {216--222},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/}
}
TY  - JOUR
AU  - Marharyta Dudenko
AU  - Bogdana Oliynyk
TI  - On unicyclic graphs of metric dimension~$2$
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 216
EP  - 222
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/
LA  - en
ID  - ADM_2017_23_2_a3
ER  - 
%0 Journal Article
%A Marharyta Dudenko
%A Bogdana Oliynyk
%T On unicyclic graphs of metric dimension~$2$
%J Algebra and discrete mathematics
%D 2017
%P 216-222
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/
%G en
%F ADM_2017_23_2_a3
Marharyta Dudenko; Bogdana Oliynyk. On unicyclic graphs of metric dimension~$2$. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 216-222. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/

[1] L. M. Blumenthal, Theory and applications of distance geometry, Clarendon Press, Oxford, 1953, xi+347 pp. | MR | Zbl

[2] F. Harary, R. A. Melter, “On the metric dimension of a graph”, Ars Comb., 1976, no. 2, 191–195 | MR | Zbl

[3] M. R. Garey, D. S. Johnson, Computers and intractability. A guide to the theory of NP-completeness, W. H. Freeman and Company, San Francisco, 1979 | MR | Zbl

[4] P. J. Slater, “Leaves of trees”, Proc. 6th southeast. Conf. Comb., Graph Theor., Comput. (Boca Raton, 1975), 549–559 | MR | Zbl

[5] B. Shanmukha, B. Sooryanarayana, K. S. Harinath, “Metric dimension of wheels”, Far East J. Appl. Math., 8:3 (2002), 217–229 | MR | Zbl

[6] C. Poisson, P. Zhang, “The metric dimension of unicyclic graphs”, J. Combin. Math. Combin. Comput., 40 (2002), 17–32 | MR | Zbl

[7] I. G. Yero, J. A. Rodriguez-Velazquez, “A note on the partition dimension of Cartesian product graphs”, Applied Mathematics and Computation, 217:7 (2010), 3571–3574 | DOI | MR | Zbl

[8] L. Eroh, P. Feit, C. X. Kang, E. Yi, “The effect of vertex or edge deletion on the metric dimension of graphs”, J. Comb., 6:4 (2015), 433–444 | MR | Zbl

[9] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, “Resolvability in graphs and the metric dimension of a graph”, Discrete Appl. Math., 105:1–3 (2000), 99–113 | DOI | MR | Zbl

[10] R. Diestel, Graph Theory, 3rd ed., Springer-Verlag, Berlin–New York, 2005 | MR | Zbl

[11] M. Dudenko, “Unicyclic graphs with metric dimension $2$”, Nauk. Zapysky NaUKMA, 165 (2015), 7–10