On unicyclic graphs of metric dimension~$2$
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 216-222

Voir la notice de l'article provenant de la source Math-Net.Ru

A metric basis $S$ of a graph $G$ is the subset of vertices of minimum cardinality such that all other vertices are uniquely determined by their distances to the vertices in $S$. The metric dimension of a graph $G$ is the cardinality of the subset $S$. A unicyclic graph is a graph containing exactly one cycle. The construction of a knitting unicyclic graph is introduced. Using this construction all unicyclic graphs with two main vertices and metric dimensions $2$ are characterized.
Keywords: metric dimensions
Mots-clés : distance, unicyclic graph.
@article{ADM_2017_23_2_a3,
     author = {Marharyta Dudenko and Bogdana Oliynyk},
     title = {On unicyclic graphs of metric dimension~$2$},
     journal = {Algebra and discrete mathematics},
     pages = {216--222},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/}
}
TY  - JOUR
AU  - Marharyta Dudenko
AU  - Bogdana Oliynyk
TI  - On unicyclic graphs of metric dimension~$2$
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 216
EP  - 222
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/
LA  - en
ID  - ADM_2017_23_2_a3
ER  - 
%0 Journal Article
%A Marharyta Dudenko
%A Bogdana Oliynyk
%T On unicyclic graphs of metric dimension~$2$
%J Algebra and discrete mathematics
%D 2017
%P 216-222
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/
%G en
%F ADM_2017_23_2_a3
Marharyta Dudenko; Bogdana Oliynyk. On unicyclic graphs of metric dimension~$2$. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 216-222. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/