Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_23_2_a3, author = {Marharyta Dudenko and Bogdana Oliynyk}, title = {On unicyclic graphs of metric dimension~$2$}, journal = {Algebra and discrete mathematics}, pages = {216--222}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/} }
Marharyta Dudenko; Bogdana Oliynyk. On unicyclic graphs of metric dimension~$2$. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 216-222. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a3/
[1] L. M. Blumenthal, Theory and applications of distance geometry, Clarendon Press, Oxford, 1953, xi+347 pp. | MR | Zbl
[2] F. Harary, R. A. Melter, “On the metric dimension of a graph”, Ars Comb., 1976, no. 2, 191–195 | MR | Zbl
[3] M. R. Garey, D. S. Johnson, Computers and intractability. A guide to the theory of NP-completeness, W. H. Freeman and Company, San Francisco, 1979 | MR | Zbl
[4] P. J. Slater, “Leaves of trees”, Proc. 6th southeast. Conf. Comb., Graph Theor., Comput. (Boca Raton, 1975), 549–559 | MR | Zbl
[5] B. Shanmukha, B. Sooryanarayana, K. S. Harinath, “Metric dimension of wheels”, Far East J. Appl. Math., 8:3 (2002), 217–229 | MR | Zbl
[6] C. Poisson, P. Zhang, “The metric dimension of unicyclic graphs”, J. Combin. Math. Combin. Comput., 40 (2002), 17–32 | MR | Zbl
[7] I. G. Yero, J. A. Rodriguez-Velazquez, “A note on the partition dimension of Cartesian product graphs”, Applied Mathematics and Computation, 217:7 (2010), 3571–3574 | DOI | MR | Zbl
[8] L. Eroh, P. Feit, C. X. Kang, E. Yi, “The effect of vertex or edge deletion on the metric dimension of graphs”, J. Comb., 6:4 (2015), 433–444 | MR | Zbl
[9] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, “Resolvability in graphs and the metric dimension of a graph”, Discrete Appl. Math., 105:1–3 (2000), 99–113 | DOI | MR | Zbl
[10] R. Diestel, Graph Theory, 3rd ed., Springer-Verlag, Berlin–New York, 2005 | MR | Zbl
[11] M. Dudenko, “Unicyclic graphs with metric dimension $2$”, Nauk. Zapysky NaUKMA, 165 (2015), 7–10