Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_23_2_a12, author = {Irina Sokhor}, title = {On groups with biprimary subgroups of even order}, journal = {Algebra and discrete mathematics}, pages = {312--330}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a12/} }
Irina Sokhor. On groups with biprimary subgroups of even order. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 312-330. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a12/
[1] V. S. Monakhov, Introduction to the Theory of Finite groups and their Classes, Vyshejshaja shkola, 2006 (Russian)
[2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, 1992 | MR
[3] B. Huppert, Endliche Gruppen, v. I, Springer, 1967 | MR | Zbl
[4] V. S. Monakhov, V. N. Tyutyanov, “On finite groups with given maximal subgroups”, Sib. Math. J., 55:3 (2014), 451–456 | DOI | MR | Zbl
[5] V. A. Belonogov, “Finite groups all of whose maximal subgroups are $\pi$-decomposable. I”, Proceedings of the Steklov Institute of Mathematics, 21:1 (2015), 25–34 (Russian) | MR
[6] V. M. Levchuk, A. G. Likharev, “Finite simple groups with complemented maximal subgroups”, Sib. Math. J., 47:4 (2006), 659–668 | DOI | MR | Zbl
[7] V. N. Tyutyanov, “Finite groups with compliting subgroups”, Proceedings of Gomel State University, 36:3 (2006), 178–183 (Russian)
[8] V. N. Tyutyanov, T. V. Tihonenko, “Finite groups with Hall maximal subgroups”, Proceedings of Gomel State University, 50:5 (2008), 198–206 (Russian)
[9] V. S. Monakhov, “Finite $\pi$-solvable groups whose maximal subgroups have the Hall property”, Math. Notes, 84:3–4 (2008), 363–366 | DOI | MR | Zbl
[10] N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are hall”, Sib. Math. J., 53:5 (2012), 853–861 | DOI | MR | Zbl
[11] Unsolved Problems in Group Theory. The Kourovka Notebook, Institute of Mathematics, Russian Academy of Sciences, 2014 | Zbl
[12] N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the hall property”, Sib. Adv. in Math., 23:3 (2013), 196–209 | DOI | MR
[13] V. A. Vedernikov, “Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup”, Proceedings of the Steklov Institute of Mathematics, 285:1 (2014), 191–202 | DOI | MR
[14] V. S. Monakhov, I. L. Sokhor, Finite soluble groups with nilpotent wide subgroups, 2016, arXiv: 1603.06551 | MR
[15] I. L. Sokhor, “On finite $\pi$-soluble groups with no wide subgroups”, Problems of Physics, Mathematics and Technics, 1:26 (2016), 63–67 | Zbl
[16] S. S. Levischenko, “Finite quasibiprimary groups”, Groups defined by properties of group systems, Collection of scientific papers, Inst. Mat. AN USSR, 1979, 83–97 (Russian) | MR
[17] Q. Zhang and L. Wang., “Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup”, Algebra Colloquium, 12 (2005), 301–307 | DOI | MR | Zbl
[18] N. V. Maslova and D. O. Revin, “On nonabelian composition factors of a finite prime spectrum minimal group”, Proceedings of the Steklov Institute of Mathematics, 287:1 (2014), 116–127 | DOI | MR
[19] V. S. Monakhov, “Schmidt subgroups, their existence and some applications”, Proceeding of Ukr. Math. Congress, 2002, 81–90 (Russian) | MR | Zbl
[20] J. G. Thompson., “Nonsolvable finite groups all of whose lokal subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl
[21] B. Huppert, N. Blackburn, Finite Groups, v. III, Springer-Verlag, 1982 | MR
[22] L. R. Nyhoff, “The influence on a finite group of the cofactors and subcofactors of its subgroups”, Trans. Amer. Math. Soc., 154 (1971), 459–491 | DOI | MR | Zbl
[23] Ya. G. Berkovich, “Finite groups with maximal subgroups having large kernels”, Sib. Math. J., 9:2 (1968), 183–186 | DOI | MR | Zbl
[24] J. Dixon, J. Poland, A. Rhemtulla, “A Generalization of Hamiltonian and Nilpotent Groups”, Math. Zeit., 112 (1969), 335–339 | DOI | MR | Zbl
[25] S. M., Evtukhova, V. S. Monakhov, “Finite groups with supersolvable subgroup cofactors”, Proc. Acad. Sci. Belarus Ser. Phys.-Math. Sci., 4 (2008), 53–57 (Russian) | MR
[26] S. M., Evtukhova, V. S. Monakhov, “Finite groups with subgroup core factor orders free of squares”, Doklady NAN Belarusi, 49:2 (2005), 26–29 (Russian) | MR | Zbl
[27] I. V. Lemeshev, V. S. Monakhov, “Finite groups with decomposable cofactors of maximal subgroups”, Proceedings of the Steklov Institute of Mathematics, 17:4 (2011), 181–188 (Russian)
[28] L. P. Avdashkova, S. F. Kamornikov, “On a class of groups with given cofactors of maximal subgroups”, Math. Notes, 87:5–6 (2010), 601–607 | DOI | MR | Zbl
[29] L. Yufeng, Y. Xiaolan, “Finite Groups in which Primary Subgroups have Cyclic Cofactors”, Bulletin of the Malaysian Mathematical Sciences Society, 34:2 (2011), 337 | MR | Zbl
[30] E. T. Ogarkov, “Finite groups with given properties of cofactors”, Vestsi AN BSSR. Series of Physical-Mathematical Sciences, 3 (1974), 118–120 (Russian) | MR | Zbl
[31] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl
[32] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, 1994 | MR | Zbl
[33] J. G. Thompson, “An example of core-free quasinormal subgroup of $p$-group”, Z. Math., 96 (1973), 226–227 | DOI | MR
[34] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[35] A. V. Romanovskij, “Groups with Hall normal factors”, Finite groups, Collection of scientific papers, Nauka i tehnika, 1966, 98–115 (Russian) | MR