A note on Hall $S$-permutably embedded subgroups of finite groups
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 305-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Recall that a subgroup $A$ of $G$ is said to permute with a subgroup $B$ if $AB=BA$. A subgroup $A$ of $G$ is said to be $S$-quasinormal or $S$-permutable in $G$ if $A$ permutes with all Sylow subgroups of $G$. Recall also that $H^{s G}$ is the $S$-permutable closure of $H$ in $G$, that is, the intersection of all such $S$-permutable subgroups of $G$ which contain $H$. We say that $H$ is Hall $S$-permutably embedded in $G$ if $H$ is a Hall subgroup of the $S$-permutable closure $ H^{s G} $ of $H$ in $G$. We prove that the following conditions are equivalent: (1) every subgroup of $G$ is Hall $S$-permutably embedded in $G$; (2) the nilpotent residual $G^{\mathfrak{N}}$ of $G$ is a Hall cyclic of square-free order subgroup of $G$; (3) $G = D \rtimes M$ is a split extension of a cyclic subgroup $D$ of square-free order by a nilpotent group $M$, where $M$ and $D$ are both Hall subgroups of $G$.
Keywords: $S$-permutable subgroup, Hall $S$-permutably embedded subgroup, $S$-permutable closure, Sylow subgroup, supersoluble group, maximal subgroup.
@article{ADM_2017_23_2_a11,
     author = {Darya A. Sinitsa},
     title = {A note on {Hall}  $S$-permutably embedded subgroups of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {305--311},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a11/}
}
TY  - JOUR
AU  - Darya A. Sinitsa
TI  - A note on Hall  $S$-permutably embedded subgroups of finite groups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 305
EP  - 311
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a11/
LA  - en
ID  - ADM_2017_23_2_a11
ER  - 
%0 Journal Article
%A Darya A. Sinitsa
%T A note on Hall  $S$-permutably embedded subgroups of finite groups
%J Algebra and discrete mathematics
%D 2017
%P 305-311
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a11/
%G en
%F ADM_2017_23_2_a11
Darya A. Sinitsa. A note on Hall  $S$-permutably embedded subgroups of finite groups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 305-311. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a11/

[1] O. Kegel, “Sylow-Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[2] W. Guo, A. N. Skiba, “Finite groups with given $s$-embedded and $n$-embedded subgroups”, Journal of Algebra, 321 (2009), 2843–2860 | DOI | MR | Zbl

[3] S. R. Li, J. He, G. P. Nong, L. Q. Zhou, “On Hall normally embedded subgroups of finite groups”, Comm. Algebra, 37:9 (2009), 3360–3367 | DOI | MR | Zbl

[4] S. R. Li, J. J. Liu, “On Hall subnormally embedded and generalized nilpotent groups”, Journal of Algebra, 388 (2013), 1–9 | DOI | MR | Zbl

[5] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[6] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[7] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl

[8] J. Lio, S. Li, “CLT-groups with Hall $S$-quasinormally embedded subgroups”, Ukr. Math. Journal, 66 (2014), 1281–1287 | DOI | MR

[9] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl