Profinite closures of the iterated monodromy groups associated with quadratic polynomials
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 285-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the profinite closure of the iterated monodromy groups arising from the arbitrary post-critically finite quadratic polynomial.
Keywords: iterated monodromy groups, quadratic polynomials, profinite grous, profinite limits, group acting on trees.
@article{ADM_2017_23_2_a10,
     author = {Ihor Samoilovych},
     title = {Profinite closures of the iterated monodromy groups associated with quadratic polynomials},
     journal = {Algebra and discrete mathematics},
     pages = {285--304},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a10/}
}
TY  - JOUR
AU  - Ihor Samoilovych
TI  - Profinite closures of the iterated monodromy groups associated with quadratic polynomials
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 285
EP  - 304
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a10/
LA  - en
ID  - ADM_2017_23_2_a10
ER  - 
%0 Journal Article
%A Ihor Samoilovych
%T Profinite closures of the iterated monodromy groups associated with quadratic polynomials
%J Algebra and discrete mathematics
%D 2017
%P 285-304
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a10/
%G en
%F ADM_2017_23_2_a10
Ihor Samoilovych. Profinite closures of the iterated monodromy groups associated with quadratic polynomials. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 285-304. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a10/

[1] L. Bartholdi, V. V. Nekrashevych, “Iterated monodromy groups of quadratic polynomials, I”, Groups, Geometry, and Dynamics, 2:3 (2008), 309–336 | DOI | MR | Zbl

[2] A. M. Brunner, S. Sidki, “On the Automorphism Group of the One-Rooted Binary Tree”, Journal of Algebra, 195:2 (1997), 465–486 | DOI | MR | Zbl

[3] L. Bartholdi, B. Virág, “Amenability via random walks”, Duke Mathematical Journal, 130:1 (2005), 39–56 | DOI | MR | Zbl

[4] I. V. Bondarenko, I. O. Samoilovych, “On finite generation of self-similar groups of finite type”, International Journal of Algebra and Computation, 23:1 (2013), 69–79 | DOI | MR | Zbl

[5] R. I. Grigorchuk, A. Żuk, “On a torsion-free weakly branch group defined by a three state automaton”, International Journal of Algebra and Computation, 12:01n02 (2002), 223–246 | DOI | MR | Zbl

[6] V. Nekrashevych, Self-Similar Groups, Mathematical Surveys and Monographs, 117, American Mathematical Soc., 2005, 231 pp. | DOI | MR | Zbl

[7] R. Pink, Profinite iterated monodromy groups arising from quadratic polynomial, 2013, arXiv: 1307.5678

[8] Z. Šunić, “Hausdorff dimension in a family of self-similar groups”, Geometriae Dedicata, 124:1 (2007), 213–236 | DOI | MR