@article{ADM_2017_23_2_a1,
author = {James. C. Beidleman},
title = {A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups},
journal = {Algebra and discrete mathematics},
pages = {197--203},
year = {2017},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/}
}
TY - JOUR
AU - James. C. Beidleman
TI - A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups
JO - Algebra and discrete mathematics
PY - 2017
SP - 197
EP - 203
VL - 23
IS - 2
UR - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/
LA - en
ID - ADM_2017_23_2_a1
ER -
James. C. Beidleman. A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/
[1] R. K. Agrawal, “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 47:1 (1975), 77–83 | DOI | MR | Zbl
[2] K. A. Al-Sharo, J. C. Beidleman, H. Heineken, M. F. Ragland, “Some characterizations of finite groups in which semipermutability is a transitive relation”, Forum Math., 22:5 (2010), 855–862 | DOI | MR | Zbl
[3] A. Ballester-Bolinches, R. Esteban-Romero, “Sylow permutable subnormal subgroups of finite groups II”, Bull. Austr. Math. Soc., 64:3 (2001), 479–486 | DOI | MR | Zbl
[4] A. Ballester-Bolinches, R. Esteban-Romero, “Sylow permutable subnormal subgroups of finite groups”, J. Algebra, 251:2 (2002), 727–738 | DOI | MR | Zbl
[5] A. Ballester-Bolinches, R. Esteban-Romero, “On finite soluble groups in which Sylow permutability is a transitive relation”, Acta. Math., Hungar., 101:3 (2007), 193–202 | DOI | MR
[6] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 | DOI | MR | Zbl
[7] J. C. Beidleman, “Some new local properties defining soluble PST-groups”, Advances in Group Theory and Applications, 3 (2017), 55–66 | MR
[8] J. C. Beidleman, H. Heineken, “Pronormal and subnormal subgroups and permutability”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6:3 (2003), 605–615 | MR | Zbl
[9] J. C. Beidleman, H. Heineken, M. F. Ragland, “Solvable PST-groups, strong Sylow bases and mutually permutable products”, J. Algebra, 321:7 (2009), 2022–2027 | DOI | MR | Zbl
[10] J. C. Beidleman, M. F. Ragland, “Subnormal, permutable, and embedded subgroups in finite groups”, Cent. Eur. J. Math., 9 (2011), 915–921 | DOI | MR | Zbl
[11] W. Gaschütz, “Gruppen, in denen das Normalteilersein transitiv ist”, J. Reine Angew. Math. vol 198, 1957, 87–92 | MR | Zbl
[12] O. H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[13] J. C. Lennox, S. E. Stonehewer, Subnormal subgroups of groups, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1987 | MR | Zbl
[14] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, 2nd ed., Springer, New York, 1996 | DOI | MR
[15] D. J. S. Robinson, “A note on finite groups in which normality is transitive”, Proc. Amer. Math. Soc., 19:4 (1968), 933–937 | DOI | MR | Zbl
[16] P. Schmid, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 207:1 (1998), 285–293 | DOI | MR | Zbl
[17] L. Wang, Y. Wang, “Finite groups in which $S$-semipermutability is a transitive relation”, Int. J. Algebra, 2:3 (2008), 143–152 | MR | Zbl
[18] G. Zacher, “I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 37 (1964), 150–154 | MR | Zbl
[19] Q. Zhang, “$s$-semipermutability and abnormality in finite groups”, Comm. Algebra, 27:9 (1999), 4515–4524 | DOI | MR | Zbl
[20] Q. H. Zhang, L. F. Wang, “The influence of s-semipermutable subgroups on finite groups”, Acta. Math. Sinica (Chin. Ser.), 48:1 (2005), 81–88 (Chinese) | MR | Zbl