A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 197-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and $p$ a prime number. $G$ is said to be a $Y_p$-group if whenever $K$ is a $p$-subgroup of $G$ then every subgroup of $K$ is an $S$-permutable subgroup in $N_G(K)$. The group $G$ is a soluble $\mathrm{PST}$-group if and only if $G$ is a $Y_p$-group for all primes $p$. One of our purposes here is to define a number of local properties related to $Y_p$ which lead to several new characterizations of soluble $\mathrm{PST}$-groups. Another purpose is to define several embedding subgroup properties which yield some new classes of soluble $\mathrm{PST}$-groups. Such properties include weakly S-permutable subgroup, weakly semipermutable subgroup, and weakly seminormal subgroup.
Keywords: $\mathrm{S}$-permutable subgroup, semipermutable subgroup, seminormal subgroup, $\mathrm{PST}$-group.
@article{ADM_2017_23_2_a1,
     author = {James. C. Beidleman},
     title = {A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/}
}
TY  - JOUR
AU  - James. C. Beidleman
TI  - A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 197
EP  - 203
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/
LA  - en
ID  - ADM_2017_23_2_a1
ER  - 
%0 Journal Article
%A James. C. Beidleman
%T A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups
%J Algebra and discrete mathematics
%D 2017
%P 197-203
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/
%G en
%F ADM_2017_23_2_a1
James. C. Beidleman. A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a1/

[1] R. K. Agrawal, “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 47:1 (1975), 77–83 | DOI | MR | Zbl

[2] K. A. Al-Sharo, J. C. Beidleman, H. Heineken, M. F. Ragland, “Some characterizations of finite groups in which semipermutability is a transitive relation”, Forum Math., 22:5 (2010), 855–862 | DOI | MR | Zbl

[3] A. Ballester-Bolinches, R. Esteban-Romero, “Sylow permutable subnormal subgroups of finite groups II”, Bull. Austr. Math. Soc., 64:3 (2001), 479–486 | DOI | MR | Zbl

[4] A. Ballester-Bolinches, R. Esteban-Romero, “Sylow permutable subnormal subgroups of finite groups”, J. Algebra, 251:2 (2002), 727–738 | DOI | MR | Zbl

[5] A. Ballester-Bolinches, R. Esteban-Romero, “On finite soluble groups in which Sylow permutability is a transitive relation”, Acta. Math., Hungar., 101:3 (2007), 193–202 | DOI | MR

[6] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 | DOI | MR | Zbl

[7] J. C. Beidleman, “Some new local properties defining soluble PST-groups”, Advances in Group Theory and Applications, 3 (2017), 55–66 | MR

[8] J. C. Beidleman, H. Heineken, “Pronormal and subnormal subgroups and permutability”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6:3 (2003), 605–615 | MR | Zbl

[9] J. C. Beidleman, H. Heineken, M. F. Ragland, “Solvable PST-groups, strong Sylow bases and mutually permutable products”, J. Algebra, 321:7 (2009), 2022–2027 | DOI | MR | Zbl

[10] J. C. Beidleman, M. F. Ragland, “Subnormal, permutable, and embedded subgroups in finite groups”, Cent. Eur. J. Math., 9 (2011), 915–921 | DOI | MR | Zbl

[11] W. Gaschütz, “Gruppen, in denen das Normalteilersein transitiv ist”, J. Reine Angew. Math. vol 198, 1957, 87–92 | MR | Zbl

[12] O. H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[13] J. C. Lennox, S. E. Stonehewer, Subnormal subgroups of groups, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1987 | MR | Zbl

[14] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, 2nd ed., Springer, New York, 1996 | DOI | MR

[15] D. J. S. Robinson, “A note on finite groups in which normality is transitive”, Proc. Amer. Math. Soc., 19:4 (1968), 933–937 | DOI | MR | Zbl

[16] P. Schmid, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 207:1 (1998), 285–293 | DOI | MR | Zbl

[17] L. Wang, Y. Wang, “Finite groups in which $S$-semipermutability is a transitive relation”, Int. J. Algebra, 2:3 (2008), 143–152 | MR | Zbl

[18] G. Zacher, “I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 37 (1964), 150–154 | MR | Zbl

[19] Q. Zhang, “$s$-semipermutability and abnormality in finite groups”, Comm. Algebra, 27:9 (1999), 4515–4524 | DOI | MR | Zbl

[20] Q. H. Zhang, L. F. Wang, “The influence of s-semipermutable subgroups on finite groups”, Acta. Math. Sinica (Chin. Ser.), 48:1 (2005), 81–88 (Chinese) | MR | Zbl