Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_23_1_a6, author = {Manuel Saor{\'\i}n}, title = {Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories}, journal = {Algebra and discrete mathematics}, pages = {62--137}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/} }
TY - JOUR AU - Manuel Saorín TI - Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories JO - Algebra and discrete mathematics PY - 2017 SP - 62 EP - 137 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/ LA - en ID - ADM_2017_23_1_a6 ER -
Manuel Saorín. Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 62-137. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/
[1] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Grad. Text Math., 13, 2nd edition, Springer-Verlag, 1992 | DOI | MR | Zbl
[2] T. Bühler, “Exact categories”, Expo. Math., 28:1 (2010), 1–69 | DOI | MR | Zbl
[3] Amer. Math. Soc. Transl., 128:2 (1986), 31–55 | MR | MR | Zbl
[4] Yu. A. Drozd, “Tame and wild matrix problems”, Representation Theory II, Proc. Confer. (Ottawa 1979), Lect. Notes Math., 832, eds. V. Dlab and P. Gabriel, Springer, 1980, 242–258 | DOI | MR
[5] P. Gabriel, “Des catégories abéliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | DOI | MR | Zbl
[6] N. S. Golovaschuk, S. Ovsienko, A. V. Rojter, “On the schurian DGC”, Matrix problems, IM AN USSR, Kiev, 1977, 162–165
[7] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lect. Note Ser., 119, Cambridge University Press, 1988 | MR | Zbl
[8] P. Hilton, U. Stammbach, A Course in Homological Algebra, Grad. Texts Math., 4, 2nd edition, Springer-Verlag, 1971 | DOI | MR | Zbl
[9] M. Kashiwara, P. Shapira, Categories and sheaves, Grundl. Math. Wiss, 332, Springer-Verlag, 2006 | MR | Zbl
[10] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup, 27 (1994), 63–102 | DOI | MR | Zbl
[11] B. Keller, “Derived categories and their uses”, Handbook of Algebra, 1, North-Holland, 1996, 671–701 | DOI | MR | Zbl
[12] B. Keller, “On differential graded categories”, International Congress of Mathematics, v. II, Eur. Math. Soc. Zurich, 2006, 151–190 | MR | Zbl
[13] M. M. Kleiner, A. V. Rojter, “Representations of differential graded categories”, Proceed. 1st International Conference on Representations of Algebras (Ottawa 1974), Lect. Notes Math., 488, Springer, 1975, 316–339 | DOI | MR
[14] B. Mitchell, “Rings with several objects”, Adv. Math., 8 (1972), 1–161 | DOI | MR | Zbl
[15] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland, 1982 | MR | Zbl
[16] A. Neeman, Triangulated Categories, Princeton University Press, 2001 | MR | Zbl
[17] P. Nicolás, M. Saorín, “Classical derived functors as fully faithful embeddings”, Proc. 46th Japan Symp. Ring Theory and Repres. Theory, ed. I. Kikumasa, Yamaguchi University, 2014, 137–187
[18] P. Nicolás, M. Saorín, “Generalized tilting theory”, Appl. Categ. Str., to appear, arXiv: 1208.2803 | MR
[19] S. Ovsienko, “Bimodule and matrix problems”, Computational Methods for Representations of Groups and Algebras, Proceed. Euroconfer. (Essen 1977), Progress in Maths., 173, eds. P. Dräxler, C. M. Ringel and G. O. Michler, Birkhäuser, 1999, 325–357 | MR
[20] M. Saorín, A. Zimmermann, Symmetry of the definition of degeneration in triangulated categories https://hal.archives-ouvertes.fr/hal-01417991/file/Saorin-Zimmermann-symmtrdeg-Submit.pdf
[21] G. Tabuada, “Une structure de catégorie de modèles de Quillen sur la catégorie des $\mathrm{dg}$-catégories”, Compt. Rend. Acad. Sci. Paris, 340:1 (2005), 15–19 | DOI | MR | Zbl
[22] B. Toën, “The homotopy theory of $\mathrm{dg}$-categories and derived Morita theory”, Invent. Math., 167 (2007), 615–667 | DOI | MR | Zbl
[23] J.-L. Verdier, Des catégories dérivées des catégories abeliennes, Astérisque, 239, Soc. Math. France, 1996 | MR
[24] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991 | MR | Zbl
[25] A. Zimmermann, Representation Theory. A homological algebra point of view, Springer-Verlag, 2014 | MR | Zbl