Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 62-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the theory $\mathrm{dg}$ algebras with enough idempotents and their $\mathrm{dg}$ modules and show their equivalence with that of small $\mathrm{dg}$ categories and their $\mathrm{dg}$ modules. We introduce the concept of $\mathrm{dg}$ adjunction and show that the classical covariant tensor-Hom and contravariant Hom-Hom adjunctions of modules over associative unital algebras are extended as $\mathrm{dg}$ adjunctions between categories of $\mathrm{dg}$ bimodules. The corresponding adjunctions of the associated triangulated functors are studied, and we investigate when they are one-sided parts of bifunctors which are triangulated on both variables. We finally show that, for a $\mathrm{dg}$ algebra with enough idempotents, the perfect left and right derived categories are dual to each other.
Keywords: $\mathrm{dg}$ algebra, $\mathrm{dg}$ module, $\mathrm{dg}$ category, $\mathrm{dg}$ functor, $\mathrm{dg}$ adjunction, homotopy category, derived category, derived functor.
@article{ADM_2017_23_1_a6,
     author = {Manuel Saor{\'\i}n},
     title = {Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories},
     journal = {Algebra and discrete mathematics},
     pages = {62--137},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/}
}
TY  - JOUR
AU  - Manuel Saorín
TI  - Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 62
EP  - 137
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/
LA  - en
ID  - ADM_2017_23_1_a6
ER  - 
%0 Journal Article
%A Manuel Saorín
%T Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories
%J Algebra and discrete mathematics
%D 2017
%P 62-137
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/
%G en
%F ADM_2017_23_1_a6
Manuel Saorín. Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 62-137. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a6/

[1] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Grad. Text Math., 13, 2nd edition, Springer-Verlag, 1992 | DOI | MR | Zbl

[2] T. Bühler, “Exact categories”, Expo. Math., 28:1 (2010), 1–69 | DOI | MR | Zbl

[3] Amer. Math. Soc. Transl., 128:2 (1986), 31–55 | MR | MR | Zbl

[4] Yu. A. Drozd, “Tame and wild matrix problems”, Representation Theory II, Proc. Confer. (Ottawa 1979), Lect. Notes Math., 832, eds. V. Dlab and P. Gabriel, Springer, 1980, 242–258 | DOI | MR

[5] P. Gabriel, “Des catégories abéliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | DOI | MR | Zbl

[6] N. S. Golovaschuk, S. Ovsienko, A. V. Rojter, “On the schurian DGC”, Matrix problems, IM AN USSR, Kiev, 1977, 162–165

[7] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lect. Note Ser., 119, Cambridge University Press, 1988 | MR | Zbl

[8] P. Hilton, U. Stammbach, A Course in Homological Algebra, Grad. Texts Math., 4, 2nd edition, Springer-Verlag, 1971 | DOI | MR | Zbl

[9] M. Kashiwara, P. Shapira, Categories and sheaves, Grundl. Math. Wiss, 332, Springer-Verlag, 2006 | MR | Zbl

[10] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup, 27 (1994), 63–102 | DOI | MR | Zbl

[11] B. Keller, “Derived categories and their uses”, Handbook of Algebra, 1, North-Holland, 1996, 671–701 | DOI | MR | Zbl

[12] B. Keller, “On differential graded categories”, International Congress of Mathematics, v. II, Eur. Math. Soc. Zurich, 2006, 151–190 | MR | Zbl

[13] M. M. Kleiner, A. V. Rojter, “Representations of differential graded categories”, Proceed. 1st International Conference on Representations of Algebras (Ottawa 1974), Lect. Notes Math., 488, Springer, 1975, 316–339 | DOI | MR

[14] B. Mitchell, “Rings with several objects”, Adv. Math., 8 (1972), 1–161 | DOI | MR | Zbl

[15] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland, 1982 | MR | Zbl

[16] A. Neeman, Triangulated Categories, Princeton University Press, 2001 | MR | Zbl

[17] P. Nicolás, M. Saorín, “Classical derived functors as fully faithful embeddings”, Proc. 46th Japan Symp. Ring Theory and Repres. Theory, ed. I. Kikumasa, Yamaguchi University, 2014, 137–187

[18] P. Nicolás, M. Saorín, “Generalized tilting theory”, Appl. Categ. Str., to appear, arXiv: 1208.2803 | MR

[19] S. Ovsienko, “Bimodule and matrix problems”, Computational Methods for Representations of Groups and Algebras, Proceed. Euroconfer. (Essen 1977), Progress in Maths., 173, eds. P. Dräxler, C. M. Ringel and G. O. Michler, Birkhäuser, 1999, 325–357 | MR

[20] M. Saorín, A. Zimmermann, Symmetry of the definition of degeneration in triangulated categories https://hal.archives-ouvertes.fr/hal-01417991/file/Saorin-Zimmermann-symmtrdeg-Submit.pdf

[21] G. Tabuada, “Une structure de catégorie de modèles de Quillen sur la catégorie des $\mathrm{dg}$-catégories”, Compt. Rend. Acad. Sci. Paris, 340:1 (2005), 15–19 | DOI | MR | Zbl

[22] B. Toën, “The homotopy theory of $\mathrm{dg}$-categories and derived Morita theory”, Invent. Math., 167 (2007), 615–667 | DOI | MR | Zbl

[23] J.-L. Verdier, Des catégories dérivées des catégories abeliennes, Astérisque, 239, Soc. Math. France, 1996 | MR

[24] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991 | MR | Zbl

[25] A. Zimmermann, Representation Theory. A homological algebra point of view, Springer-Verlag, 2014 | MR | Zbl