On the representation type of Jordan basic algebras
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 47-61

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite dimensional Jordan algebra $J$ over a field $\mathbf{k}$ is called basic if the quotient algebra $J/\operatorname{Rad} J$ is isomorphic to a direct sum of copies of $\mathbf{k}$. We describe all basic Jordan algebras $J$ with $(\operatorname{Rad} J)^2=0$ of finite and tame representation type over an algebraically closed field of characteristic 0.
Keywords: Jordan algebra, representation type, quiver of an algebra.
Mots-clés : Jordan bimodule
@article{ADM_2017_23_1_a5,
     author = {Iryna Kashuba and Serge Ovsienko and Ivan Shestakov},
     title = {On the representation type of {Jordan} basic algebras},
     journal = {Algebra and discrete mathematics},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/}
}
TY  - JOUR
AU  - Iryna Kashuba
AU  - Serge Ovsienko
AU  - Ivan Shestakov
TI  - On the representation type of Jordan basic algebras
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 47
EP  - 61
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/
LA  - en
ID  - ADM_2017_23_1_a5
ER  - 
%0 Journal Article
%A Iryna Kashuba
%A Serge Ovsienko
%A Ivan Shestakov
%T On the representation type of Jordan basic algebras
%J Algebra and discrete mathematics
%D 2017
%P 47-61
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/
%G en
%F ADM_2017_23_1_a5
Iryna Kashuba; Serge Ovsienko; Ivan Shestakov. On the representation type of Jordan basic algebras. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/