On the representation type of Jordan basic algebras
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 47-61
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite dimensional Jordan algebra $J$ over a field $\mathbf{k}$ is called basic if the quotient algebra $J/\operatorname{Rad} J$ is isomorphic to a direct sum of copies of $\mathbf{k}$. We describe all basic Jordan algebras $J$ with $(\operatorname{Rad} J)^2=0$ of finite and tame representation type over an algebraically closed field of characteristic 0.
Keywords:
Jordan algebra, representation type, quiver of an algebra.
Mots-clés : Jordan bimodule
Mots-clés : Jordan bimodule
@article{ADM_2017_23_1_a5,
author = {Iryna Kashuba and Serge Ovsienko and Ivan Shestakov},
title = {On the representation type of {Jordan} basic algebras},
journal = {Algebra and discrete mathematics},
pages = {47--61},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/}
}
TY - JOUR AU - Iryna Kashuba AU - Serge Ovsienko AU - Ivan Shestakov TI - On the representation type of Jordan basic algebras JO - Algebra and discrete mathematics PY - 2017 SP - 47 EP - 61 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/ LA - en ID - ADM_2017_23_1_a5 ER -
Iryna Kashuba; Serge Ovsienko; Ivan Shestakov. On the representation type of Jordan basic algebras. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a5/