Galois orders of symmetric differential operators
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras. In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for $\mathrm{gl}_n$ and $\mathrm{sl}_n$ in [18] and [21], respectively. We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order.
Keywords: Weyl algebra, invariant differential operators, filed of fractions.
Mots-clés : Galois order
@article{ADM_2017_23_1_a4,
     author = {Vyacheslav Futorny and Jo\~ao Schwarz},
     title = {Galois orders of symmetric differential operators},
     journal = {Algebra and discrete mathematics},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/}
}
TY  - JOUR
AU  - Vyacheslav Futorny
AU  - João Schwarz
TI  - Galois orders of symmetric differential operators
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 35
EP  - 46
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/
LA  - en
ID  - ADM_2017_23_1_a4
ER  - 
%0 Journal Article
%A Vyacheslav Futorny
%A João Schwarz
%T Galois orders of symmetric differential operators
%J Algebra and discrete mathematics
%D 2017
%P 35-46
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/
%G en
%F ADM_2017_23_1_a4
Vyacheslav Futorny; João Schwarz. Galois orders of symmetric differential operators. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/

[1] Alev J., Ooms A., Van den Bergh M., “A class of counterexamples to the Gelfand-Kirillov conjecture”, Trans. Amer. Math. Soc., 348 (1996), 1709–1716 | DOI | MR | Zbl

[2] Alev J., Ooms A., Van den Bergh M., “The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight”, J. Algebra, 227 (2000), 549–581 (Corrigendum in J. Algebra 230 (2000), p. 749) | DOI | MR | Zbl

[3] Alev J., Dumas F., Opérateurs différentiels invariants et problème de Noether, Studies in Lie Theory, eds. J. Bernstein, V. Hinich and A. Melnikov, Birkhäuser, Boston, 2006 | MR

[4] St. Petersburg Math. J., 4 (1993), 71–92 | MR | Zbl

[5] Borho W., Gabriel P., Rentschler R., Primideale in Einhullenden Auflösbarer Lie-Algebren, Lecture Notes in Mathematics, 357, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[6] Block R., “The irreducible representations of the Lie algebra $\mathrm{sl}(2)$ and of the Weyl algebra”, Adv. Math., 39 (1981), 69–110 | DOI | MR | Zbl

[7] Burnside W., Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1914 ; reprinted by Dover, New York, 1955 | MR | Zbl

[8] Cannings R., Holland M. P., “Differential operators on varieties with a quotient subvariety”, J. Algebra, 170:3 (1994), 735–753 | DOI | MR | Zbl

[9] J. Dixmier, Alg`ebres enveloppantes, Cahiers Scientifiques, XXXVII, Gauthier-Villars, Paris–Brussels–Montreal, Que., 1974 (French) | MR

[10] Drozd Y., Ovsienko A., Futorny F., “On Gelfand-Zetlin modules”, Proceedings of the Winter School on Geometry and Physics (Srnı, 1990), 1991, 143–147 | MR | Zbl

[11] Drozd Y., Ovsienko A., Futorny F., “Harish-Chandra subalgebras and Gelfand-Zetlin modules”, Finite Dimensional Algebras and Related Topics, NATO ASI Ser. C. (Math. Phys. Sci.), 424, 1994, 79–93 | MR | Zbl

[12] Eshmatov F., Futorny V., Ovsienko S., Schwarz J., “Noncommutative Noether's Problem for Unitary Reflection Groups”, Proceedings of the American Mathematical Society, to appear | MR

[13] Fernando S. L., “Lie algebra modules with finite-dimensional weight spaces. I”, Trans. Amer. Math. Soc., 322:2 (1990), 757–781 | MR | Zbl

[14] Fischer E., “Zur theorie der endlichen Abelschen Gruppe”, Math. Ann., 77 (1916), 81–88 | DOI | MR

[15] Formanek E., “Rational Function Fields. Noether's Problem and Related Questions”, Journal of Pure and Applied Algebra, 31 (1984), 28–36 | DOI | MR | Zbl

[16] Futorny V., Molev A., Ovsienko A., “Harish-Chandra modules for Yangians”, Represent. Theory, 9 (2005), 426–454 | DOI | MR | Zbl

[17] Futorny V., Ovsienko S., “Konstant's theorem for special filtered algebras”, Bulletin of the London Mathematical Society, 37 (2005), 187–199 | DOI | MR | Zbl

[18] Futorny V., Molev A., Ovsienko S., “The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite $W$-algebras”, Advances in Mathematics, 223 (2010), 773–796 | DOI | MR | Zbl

[19] Futorny V., Molev A., Ovsienko S., “The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite $W$-algebras”, Advances in Mathematics, 223 (2010), 773–796 | DOI | MR | Zbl

[20] Futorny V., Ovsienko S., “Galois orders in skew monoid rings”, J. of Algebra, 324 (2010), 598–630 | DOI | MR | Zbl

[21] Futorny V., Hartwig J. T., “Solution of a q-difference Noether Problem and the quantum Gelfand-Kirillov Conjecture for $gl_N$”, Mathematische Zeitschrift, 276 (2014), 1–37 | DOI | MR | Zbl

[22] Futorny V., Ovsienko S., “Fibers of characters in Gelfand-Tsetlin categories”, Trans. Amer. Math. Soc., 366 (2014), 4173–4208 | DOI | MR | Zbl

[23] Gelfand I. M., Tsetlin M. S., “Finite dimensional representations of the group of unimodular matrices”, Doklady Akad. Nauk SSSR, 71 (1950), 1017–1020 | MR | Zbl

[24] Gelfand I. M., Kirillov K. K., “Sur les corps liés aux algebres enveloppantes des algebres de Lie”, Inst. Hautes Etudes Sci. Publ. Math., 31 (1966), 5–19 | DOI | MR

[25] Humphreys J. E., Representations of Semisimple Lie Algebras in the BGG Category $\mathscr{O}$, Graduate Studies in Mathematics, 94, American Mathematical Society, 2008 | DOI | MR

[26] James G., Kerber A., The Representation Theory of the Symmetric Group, Addison Wesley, 1980 | MR

[27] Joseph A., “Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras”, Proc. Amer. Math. Soc., 45 (1974), 1–10 | DOI | MR | Zbl

[28] Khomenko A., “Some applications of Gelfand-Zetlin modules”, Representations of Algebras and Related Topics, Fields Inst. Commun., 45, Amer. Math. Soc., Providence, RI, 2005, 205–213 | MR | Zbl

[29] Levasseur T., Stafford J., “Invariant differential operators and an homomorphism of Harish-Chandra”, J. Amer. Math. Soc., 8 (1995), 365–372 | DOI | MR | Zbl

[30] Maeda T., “Noether's problem for $A_5$”, Journal of Algebra, 125 (1989), 418–430 | DOI | MR | Zbl

[31] Mathieu O., “Classification of irreducible weight modules”, Ann. Inst. Fourier (Grenoble), 50:2 (2000), 537–592 (English, with English and French summaries) | DOI | MR | Zbl

[32] McConnell J. C., “Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture”, Proc. London Math. Soc., 29 (1974), 453–484 | DOI | MR | Zbl

[33] McConnell J. C., Robson J. C., Noncommutative noetherian rings, Graduate Studies in Mathematics, 30, revised edition, American Mathematical Society, Providence, 2001 | DOI | MR | Zbl

[34] Molev A., “Gelfand-Tsetlin bases for classical Lie algebras”, Handbook of algebra, v. 4, Elsevier-North-Holland, Amsterdam, 2006, 109–170 | DOI | MR | Zbl

[35] Montgomery S., Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Mathematics, 818, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | DOI | MR | Zbl

[36] Noether E., “Rational Funktionenkörper”, Jahrbericht Deutsch. Math.-Verein., 22, 1913, 316–319 ; Reprinted in Collected Papers, Springer, Berlin, 1982, 141–144 | Zbl

[37] Okunkov A., Vershik A., “A new approach to representation theory of symmetric groups”, Selecta Math. (N.S.), 2 (1996), 581–605 | DOI | MR | Zbl

[38] Ovsienko S., “Finiteness statements for Gelfand-Tsetlin modules”, Proceedings of Third International Algebraic Conference in Ukraine, Natsional. Akad. Nauk Ukrainy, Inst. Mat., Kiev, 2002, 323–338 (Ukrainian) | MR

[39] Premet A., “Modular Lie Algebras and the Gelfand-Kirillov conjecture”, Invent. Math., 181 (2010), 395–420 | DOI | MR | Zbl

[40] Saltman D., “Noether's problem over an algebraically closed field”, Invent. Math., 77 (1984), 71–84 | DOI | MR | Zbl

[41] Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl | Zbl