Galois orders of symmetric differential operators
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 35-46

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras. In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for $\mathrm{gl}_n$ and $\mathrm{sl}_n$ in [18] and [21], respectively. We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order.
Keywords: Weyl algebra, invariant differential operators, filed of fractions.
Mots-clés : Galois order
@article{ADM_2017_23_1_a4,
     author = {Vyacheslav Futorny and Jo\~ao Schwarz},
     title = {Galois orders of symmetric differential operators},
     journal = {Algebra and discrete mathematics},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/}
}
TY  - JOUR
AU  - Vyacheslav Futorny
AU  - João Schwarz
TI  - Galois orders of symmetric differential operators
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 35
EP  - 46
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/
LA  - en
ID  - ADM_2017_23_1_a4
ER  - 
%0 Journal Article
%A Vyacheslav Futorny
%A João Schwarz
%T Galois orders of symmetric differential operators
%J Algebra and discrete mathematics
%D 2017
%P 35-46
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/
%G en
%F ADM_2017_23_1_a4
Vyacheslav Futorny; João Schwarz. Galois orders of symmetric differential operators. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a4/