On representations of the group of order two over local factorial rings in the weakly modular case
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study representations of the group of order $2$ over local factorial rings of characteristic not $2$ with residue field of characteristic $2$. The main results are related to a sufficient condition of wildness of groups.
Keywords: free algebra, factorial ring, maximal ideal, perfect representation, wild group.
@article{ADM_2017_23_1_a2,
     author = {V. Bondarenko and M. Stoika},
     title = {On representations of the group of order two over local factorial rings in the weakly modular case},
     journal = {Algebra and discrete mathematics},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a2/}
}
TY  - JOUR
AU  - V. Bondarenko
AU  - M. Stoika
TI  - On representations of the group of order two over local factorial rings in the weakly modular case
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 7
EP  - 15
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a2/
LA  - en
ID  - ADM_2017_23_1_a2
ER  - 
%0 Journal Article
%A V. Bondarenko
%A M. Stoika
%T On representations of the group of order two over local factorial rings in the weakly modular case
%J Algebra and discrete mathematics
%D 2017
%P 7-15
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a2/
%G en
%F ADM_2017_23_1_a2
V. Bondarenko; M. Stoika. On representations of the group of order two over local factorial rings in the weakly modular case. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 7-15. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a2/

[1] V. M. Bondarenko, Ju. A. Drozd, “The representation type of finite groups”, Modules and representations, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 71, 1977, 24–41 (Russian) | MR | Zbl

[2] V. M. Bondarenko, “The similarity of matrices over rings of residue classes”, Mathematics collection, Naukova Dumka, Kiev, 1976, 275–277 (Russian) | MR

[3] V. M. Bondarenko, Private Communication, 2016

[4] P. M. Gudivok, “Modular and integral representations of finite groups”, Dokl. Akad. Nauk SSSR, 214:5 (1974), 993–996 (Russian) | MR | Zbl

[5] P. M. Gudivok, “Representations of finite groups over a complete discrete valuation ring”, Algebra, number theory and their applications, Trudy Mat. Inst. Steklov, 148, 1978, 96–105 (Russian) | MR | Zbl

[6] V. M. Bondarenko, P. M. Gudivok, “Representations of finite $p$-groups over a ring of formal power series with integer $p$-adic coefficients”, Infinite groups and related algebraic structures, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1993, 5–14 (Russian) | MR

[7] P. M. Gudivok, S. P. Kindyukh, “On matrix representations of finite $2$-groups over local integral domains of characteristic zero”, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. Inform., 12–13 (2006), 59–64 (Ukrainian) | MR | Zbl

[8] P. M. Gudivok, S. P. Kindyukh, “On wild finite $2$-groups over local integral domains of characteristic zero”, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. Inform., 18 (2009), 54–61 (Ukrainian) | Zbl

[9] Ju. A. Drozd, “Tame and wild matrix problems”, Representations and quadratic forms, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, 39–74 (Russian) | MR

[10] P. Donovan, M. R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lect. Notes, 5, Carleton Univ., Ottawa, Ont., 1973, 83 pp. | MR | Zbl

[11] L. A. Nazarova, “Representations of quivers of infinite type”, Izv. Akad. Nauk SSSR, Ser. Mat., 37:4 (1973), 752–791 (Russian) | MR | Zbl

[12] A. S. Shkabara, Commutative quivers of tame type I, Akad. Nauk Ukrain. SSR, Inst. Mat., 1978, 56 pp., Preprint no. 42 (Russian) | MR

[13] A. G. Zavadskij, Quivers without cycles and with an isolated path of tame type, Akad. Nauk Ukrain. SSR, Inst. Mat., 1978, Preprint no. 43 (Russian) | MR

[14] L. A. Nazarova, “Partially ordered sets of infinite type”, Izv. Akad. Nauk SSSR, Ser. Mat., 39:5 (1975), 963–991 (Russian) | MR

[15] L. A. Nazarova, V. M. Bondarenko, A. V. Roiter, Representations of partially ordered sets with involution, Akad. Nauk Ukrain. SSR, Inst. Mat., 1986, Preprint no. 80 | MR

[16] L. A. Nazarova, V. M. Bondarenko, A. V. Roiter, “Tame partially ordered sets with involution”, Galois theory, rings, algebraic groups and their applications, Trudy Mat. Inst. Steklov, 183, 1990, 149–159 (Russian) | MR

[17] V. M. Bondarenko, A. G. Zavadskij, “Posets with an equivalence relation of tame type and of finite growth”, Representations of finite-dimensional algebras (Tsukuba, 1990), CMS Conf. Proc., 11, Amer. Math. Soc., Providence, RI, 1991, 67–88 | MR

[18] S. Kasjan, D. Simson, “Varieties of poset representations and minimal posets of wild prinjective type”, Representations of algebras (Ottawa, ON, 1992), CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, 1993, 245–284 | MR | Zbl

[19] V. M. Bondarenko, “Linear operators on $S$-graded vector spaces”, Linear Algebra Appl., 365, Special issue on linear algebra methods in representation theory (2003), 45–90 | DOI | MR | Zbl

[20] D. M. Arnold, D. Simson, “Endo-wild representation type and generic representations of finite posets”, Pacific J. Math., 219:1 (2005), 1–26 | DOI | MR | Zbl

[21] V. M. Bondarenko, V. Futorny, T. Klimchuk, V. V. Sergeichuk, K. Yusenko, “Systems of subspaces of a unitary space”, Linear Algebra Appl., 438:5 (2013), 2561–2573 | DOI | MR | Zbl