On $n$-stars in colorings and orientations of graphs
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 301-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-star $S$ in a graph $G$ is the union of geodesic intervals $I_{1},\ldots,I_{k}$ with common end $O$ such that the subgraphs $I_{1}\setminus\{O\},\ldots,I_{k}\setminus\{O\}$ are pairwise disjoint and $l(I_{1})+\ldots+l(I_{k})= n$. If the edges of $G$ are oriented, $S$ is directed if each ray $I_{i}$ is directed. For natural number $n,r$, we construct a graph $G$ of $\operatorname{diam}(G)=n$ such that, for any $r$-coloring and orientation of $E(G)$, there exists a directed $n$-star with monochrome rays of pairwise distinct colors.
Keywords: $n$-star, coloring
Mots-clés : orientation.
@article{ADM_2016_22_2_a9,
     author = {Igor Protasov},
     title = {On $n$-stars in colorings and orientations of graphs},
     journal = {Algebra and discrete mathematics},
     pages = {301--303},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a9/}
}
TY  - JOUR
AU  - Igor Protasov
TI  - On $n$-stars in colorings and orientations of graphs
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 301
EP  - 303
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a9/
LA  - en
ID  - ADM_2016_22_2_a9
ER  - 
%0 Journal Article
%A Igor Protasov
%T On $n$-stars in colorings and orientations of graphs
%J Algebra and discrete mathematics
%D 2016
%P 301-303
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a9/
%G en
%F ADM_2016_22_2_a9
Igor Protasov. On $n$-stars in colorings and orientations of graphs. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 301-303. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a9/

[1] M. Cochand, P. Duchet, “A few remarks on orientations of graphs and Ramsey theory”, Irregularities of Partitions, Algorithms and Combinatorics, 8, eds. G. Halasz and V. T. Sos, Springer-Verlag, Berlin, 1989, 39–46 | MR

[2] J. Nešetril, V. Rödl, “Sparse Ramsey graphs”, Combinatorica, 4:1 (1984), 71–78 | DOI | MR

[3] I. Kohayakawa, T. Łuczak, V. Rödl, “Ramsey-type results for oriented trees”, J. Graph Theory, 22:1 (1996), 1–8 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl