The endomorphism monoids of ($n-3$)-regular graphs of order $n$
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 284-300

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is motivated by the result of W. Li, that presents an infinite family of graphs - complements of cycles — which possess a regular monoid. We show that these regular monoids are completely regular. Furthermore, we characterize the regular, orthodox and completely regular endomorphisms of the join of complements of cycles, i.e. ($n-3$)-regular graphs of order $n$.
Keywords: complement of cycle, join, endomorphism monoid, completely regular
Mots-clés : orthodox.
@article{ADM_2016_22_2_a8,
     author = {N. Pipattanajinda and U. Knauer and B. Gyurov and S. Panma},
     title = {The endomorphism monoids of ($n-3$)-regular graphs of order $n$},
     journal = {Algebra and discrete mathematics},
     pages = {284--300},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/}
}
TY  - JOUR
AU  - N. Pipattanajinda
AU  - U. Knauer
AU  - B. Gyurov
AU  - S. Panma
TI  - The endomorphism monoids of ($n-3$)-regular graphs of order $n$
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 284
EP  - 300
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/
LA  - en
ID  - ADM_2016_22_2_a8
ER  - 
%0 Journal Article
%A N. Pipattanajinda
%A U. Knauer
%A B. Gyurov
%A S. Panma
%T The endomorphism monoids of ($n-3$)-regular graphs of order $n$
%J Algebra and discrete mathematics
%D 2016
%P 284-300
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/
%G en
%F ADM_2016_22_2_a8
N. Pipattanajinda; U. Knauer; B. Gyurov; S. Panma. The endomorphism monoids of ($n-3$)-regular graphs of order $n$. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 284-300. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/