The endomorphism monoids of ($n-3$)-regular graphs of order $n$
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 284-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is motivated by the result of W. Li, that presents an infinite family of graphs - complements of cycles — which possess a regular monoid. We show that these regular monoids are completely regular. Furthermore, we characterize the regular, orthodox and completely regular endomorphisms of the join of complements of cycles, i.e. ($n-3$)-regular graphs of order $n$.
Keywords: complement of cycle, join, endomorphism monoid, completely regular
Mots-clés : orthodox.
@article{ADM_2016_22_2_a8,
     author = {N. Pipattanajinda and U. Knauer and B. Gyurov and S. Panma},
     title = {The endomorphism monoids of ($n-3$)-regular graphs of order $n$},
     journal = {Algebra and discrete mathematics},
     pages = {284--300},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/}
}
TY  - JOUR
AU  - N. Pipattanajinda
AU  - U. Knauer
AU  - B. Gyurov
AU  - S. Panma
TI  - The endomorphism monoids of ($n-3$)-regular graphs of order $n$
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 284
EP  - 300
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/
LA  - en
ID  - ADM_2016_22_2_a8
ER  - 
%0 Journal Article
%A N. Pipattanajinda
%A U. Knauer
%A B. Gyurov
%A S. Panma
%T The endomorphism monoids of ($n-3$)-regular graphs of order $n$
%J Algebra and discrete mathematics
%D 2016
%P 284-300
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/
%G en
%F ADM_2016_22_2_a8
N. Pipattanajinda; U. Knauer; B. Gyurov; S. Panma. The endomorphism monoids of ($n-3$)-regular graphs of order $n$. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 284-300. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a8/

[1] D. Amar, “Irregularity strength of regular graphs of large degree”, Discrete Math., 114 (1993), 9–17 | DOI | MR | Zbl

[2] S. Fan, “On end-regular graphs”, Discrete Math., 159 (1996), 95–102 | DOI | MR | Zbl

[3] F. Harary, Graph theory, Addison-Wesley, 1972 | MR

[4] H. Hou, Y. Luo, “Graphs whose endomorphism monoids are regular”, Discrete Math., 308 (2008), 3888–3896 | DOI | MR | Zbl

[5] U. Knauer, “Endomorphisms of graphs II. Various unretractive graphs”, Arch. Math., 55 (1990), 193–203 | DOI | MR | Zbl

[6] U. Knauer, “Unretractive and S-unretractive joins and lexicographic products of graphs”, J. Graph Theory, 11:3 (1987), 429–440 | DOI | MR | Zbl

[7] W. Li, “A regular endomorphism of a graph and its inverses”, Mathematika, 41 (1994), 189–198 | DOI | MR | Zbl

[8] W. Li, “Graphs with regular monoids”, Discrete Math., 265 (2003), 105–118 | DOI | MR | Zbl

[9] W. Li, “Green's relations on the endomorphism monoid of a graph”, Mathematica Slovaca, 45:4 (1995), 335–347 | MR | Zbl

[10] M. Petrich, N. R. Reilly, Completely regular semigroups, Wiley Interscience, 1999 | MR | Zbl

[11] B. M. Schein, B. Teclezghi, “Endomorphisms of finite full transformation semigroups”, Proc. Amer. Math. Soc., 126:9 (1998), 2579–2587 | DOI | MR | Zbl

[12] A. Wilkeit, “Graphs with regular endomorphism monoid”, Arch. Math., 66 (1996), 344–352 | DOI | MR | Zbl