Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_2_a7, author = {Fausto Ongay and Ra\'ul Vel\'asquez and Luis Alberto Wills-Toro}, title = {Normal subdigroups and the isomorphism theorems for digroups}, journal = {Algebra and discrete mathematics}, pages = {262--283}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/} }
TY - JOUR AU - Fausto Ongay AU - Raúl Velásquez AU - Luis Alberto Wills-Toro TI - Normal subdigroups and the isomorphism theorems for digroups JO - Algebra and discrete mathematics PY - 2016 SP - 262 EP - 283 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/ LA - en ID - ADM_2016_22_2_a7 ER -
Fausto Ongay; Raúl Velásquez; Luis Alberto Wills-Toro. Normal subdigroups and the isomorphism theorems for digroups. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 262-283. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/
[1] J. Almeida, Finite Semigroups and Universal Algebra, Series in Algebra, 3, World Scientific, 1994 | MR | Zbl
[2] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Electronic reprint, The Millenium Edition
[3] J. B. Fraleigh, A First Course in Abstract Algebra, 6th Edition, Addison-Wesley, 1999 | MR | Zbl
[4] H. Herrlich, G. E. Strecker, Category Theory, Allyn and Bacon, Boston, 1973 | Zbl
[5] M. K. Kinyon, “Leibniz algebras, Lie Racks, and Digroups”, Journal of Lie Theory, 17:4 (2007), 99–114 | MR | Zbl
[6] F. Ongay, On the Notion of Digroup, Preprint CIMAT I-10-04 (MB), 2010
[7] A. V. Zhuchok, “Dimonoids and bar-units”, Sib. Math. J., 56:5 (2015), 827–840 | DOI | MR | Zbl