Normal subdigroups and the isomorphism theorems for digroups
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 262-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.
Keywords: digroups, isomorphism theorems.
@article{ADM_2016_22_2_a7,
     author = {Fausto Ongay and Ra\'ul Vel\'asquez and Luis Alberto Wills-Toro},
     title = {Normal subdigroups and the isomorphism theorems for digroups},
     journal = {Algebra and discrete mathematics},
     pages = {262--283},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/}
}
TY  - JOUR
AU  - Fausto Ongay
AU  - Raúl Velásquez
AU  - Luis Alberto Wills-Toro
TI  - Normal subdigroups and the isomorphism theorems for digroups
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 262
EP  - 283
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/
LA  - en
ID  - ADM_2016_22_2_a7
ER  - 
%0 Journal Article
%A Fausto Ongay
%A Raúl Velásquez
%A Luis Alberto Wills-Toro
%T Normal subdigroups and the isomorphism theorems for digroups
%J Algebra and discrete mathematics
%D 2016
%P 262-283
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/
%G en
%F ADM_2016_22_2_a7
Fausto Ongay; Raúl Velásquez; Luis Alberto Wills-Toro. Normal subdigroups and the isomorphism theorems for digroups. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 262-283. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a7/

[1] J. Almeida, Finite Semigroups and Universal Algebra, Series in Algebra, 3, World Scientific, 1994 | MR | Zbl

[2] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Electronic reprint, The Millenium Edition

[3] J. B. Fraleigh, A First Course in Abstract Algebra, 6th Edition, Addison-Wesley, 1999 | MR | Zbl

[4] H. Herrlich, G. E. Strecker, Category Theory, Allyn and Bacon, Boston, 1973 | Zbl

[5] M. K. Kinyon, “Leibniz algebras, Lie Racks, and Digroups”, Journal of Lie Theory, 17:4 (2007), 99–114 | MR | Zbl

[6] F. Ongay, On the Notion of Digroup, Preprint CIMAT I-10-04 (MB), 2010

[7] A. V. Zhuchok, “Dimonoids and bar-units”, Sib. Math. J., 56:5 (2015), 827–840 | DOI | MR | Zbl