An amalgamation property for metric spaces
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 233-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that suficiently similar finite metric spaces can be amalgamated so that the distance between them is sufficiently small.
Keywords: amalgamation, finite metric spaces.
@article{ADM_2016_22_2_a5,
     author = {Aleksander Ivanov and Barbara Majcher-Iwanow},
     title = {An amalgamation property for metric spaces},
     journal = {Algebra and discrete mathematics},
     pages = {233--239},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a5/}
}
TY  - JOUR
AU  - Aleksander Ivanov
AU  - Barbara Majcher-Iwanow
TI  - An amalgamation property for metric spaces
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 233
EP  - 239
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a5/
LA  - en
ID  - ADM_2016_22_2_a5
ER  - 
%0 Journal Article
%A Aleksander Ivanov
%A Barbara Majcher-Iwanow
%T An amalgamation property for metric spaces
%J Algebra and discrete mathematics
%D 2016
%P 233-239
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a5/
%G en
%F ADM_2016_22_2_a5
Aleksander Ivanov; Barbara Majcher-Iwanow. An amalgamation property for metric spaces. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a5/

[1] S. A. Bogatyi, “Metrically homogeneous spaces”, Russian Math. Surveys, 57 (2002), 221–240 | DOI | MR | Zbl

[2] S. Coskey, M. Lupini, “A Lópes-Escobar theorem for metric structures, and the topological Vaught conjecture”, Fund. Math., 234:1 (2016), 55–72 | MR | Zbl

[3] A. Ivanov, B. Majcher-Iwanow, Polish $G$-spaces and continuous logic, arXiv: 1304.5135 | MR

[4] J. Melleray, “Some geometric and dynamical properties of the Urysohn space”, Topology Appl., 155 (2008), 1531–1560 | DOI | MR | Zbl

[5] J. Ne$\check{s}$et$\check{r}$il, “Metric spaces are Ramsey”, European J. Combin., 28:1 (2007), 457–468 | DOI | MR

[6] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006 | MR | Zbl