Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_2_a5, author = {Aleksander Ivanov and Barbara Majcher-Iwanow}, title = {An amalgamation property for metric spaces}, journal = {Algebra and discrete mathematics}, pages = {233--239}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a5/} }
Aleksander Ivanov; Barbara Majcher-Iwanow. An amalgamation property for metric spaces. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a5/
[1] S. A. Bogatyi, “Metrically homogeneous spaces”, Russian Math. Surveys, 57 (2002), 221–240 | DOI | MR | Zbl
[2] S. Coskey, M. Lupini, “A Lópes-Escobar theorem for metric structures, and the topological Vaught conjecture”, Fund. Math., 234:1 (2016), 55–72 | MR | Zbl
[3] A. Ivanov, B. Majcher-Iwanow, Polish $G$-spaces and continuous logic, arXiv: 1304.5135 | MR
[4] J. Melleray, “Some geometric and dynamical properties of the Urysohn space”, Topology Appl., 155 (2008), 1531–1560 | DOI | MR | Zbl
[5] J. Ne$\check{s}$et$\check{r}$il, “Metric spaces are Ramsey”, European J. Combin., 28:1 (2007), 457–468 | DOI | MR
[6] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006 | MR | Zbl