Free $n$-dinilpotent doppelsemigroups
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 304-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic $K$-theory. In this paper we consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. We construct a free $n$-dinilpotent doppelsemigroup and study separately free $n$-dinilpotent doppelsemigroups of rank $1$. Moreover, we characterize the least $n$-dinilpotent congruence on a free doppelsemigroup, establish that the semigroups of the free $n$-dinilpotent doppelsemigroup are isomorphic and the automorphism group of the free $n$-dinilpotent doppelsemigroup is isomorphic to the symmetric group. We also give different examples of doppelsemigroups and prove that a system of axioms of a doppelsemigroup is independent.
Keywords: interassociativity, doppelsemigroup, free $n$-dinilpotent doppelsemigroup, free doppelsemigroup, semigroup, congruence.
Mots-clés : doppelalgebra
@article{ADM_2016_22_2_a10,
     author = {Anatolii V. Zhuchok and Milan Demko},
     title = {Free $n$-dinilpotent doppelsemigroups},
     journal = {Algebra and discrete mathematics},
     pages = {304--316},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a10/}
}
TY  - JOUR
AU  - Anatolii V. Zhuchok
AU  - Milan Demko
TI  - Free $n$-dinilpotent doppelsemigroups
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 304
EP  - 316
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a10/
LA  - en
ID  - ADM_2016_22_2_a10
ER  - 
%0 Journal Article
%A Anatolii V. Zhuchok
%A Milan Demko
%T Free $n$-dinilpotent doppelsemigroups
%J Algebra and discrete mathematics
%D 2016
%P 304-316
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a10/
%G en
%F ADM_2016_22_2_a10
Anatolii V. Zhuchok; Milan Demko. Free $n$-dinilpotent doppelsemigroups. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 304-316. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a10/

[2] B. Richter, Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universitat Bonn, 1997 http://www.math.uni-hamburg.de/home/richter/publications.html | Zbl

[3] T. Pirashvili, “Sets with two associative operations”, Cent. Eur. J. Math., 2 (2003), 169–183 | DOI | MR | Zbl

[4] A. V. Zhuchok, “Free products of doppelsemigroups”, Algebra Univers, Accepted in 2016 | MR

[5] J.-L. Loday, M. O. Ronco, “Order structure on the algebra of permutations and of planar binary trees”, J. Algebraic Combin., 15 (2002), 253–270 | DOI | MR | Zbl

[6] M. Aguiar, M. Livernet, “The associative operad and the weak order on the symmetric groups”, J. Homotopy Relat. Struct., 2:1 (2007), 57–84 | MR | Zbl

[7] M. Drouzy, La structuration des ensembles de semigroupes d’ordre 2, 3 et 4 par la relation d’interassociativité, Manuscript, 1986

[8] M. Gould, K. A. Linton, A. W. Nelson, “Interassociates of monogenic semigroups”, Semigroup Forum, 68 (2004), 186–201 | DOI | MR | Zbl

[9] B. N. Givens, K. Linton, A. Rosin, L. Dishman, “Interassociates of the free commutative semigroup on $n$ generators”, Semigroup Forum, 74 (2007), 370–378 | DOI | MR | Zbl

[10] J. B. Hickey, “Semigroups under a sandwich operation”, Proc. Edinburgh Math. Soc., 26 (1983), 371–382 | DOI | MR | Zbl

[11] A. B. Gorbatkov, “Interassociativity on a free commutative semigroup”, Sib. Math. J., 54:3 (2013), 441–445 | DOI | MR | Zbl

[12] B. N. Givens, A. Rosin, K. Linton, “Interassociates of the bicyclic semigroup”, Semigroup Forum, 2016 | DOI | MR

[13] M. Gould, R. E. Richardson, “Translational hulls of polynomially related semigroups”, Czechoslovak Math. J., 33:1 (1983), 95–100 | MR | Zbl

[14] J.-L. Loday, “Dialgebras”, Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66 | DOI | MR | Zbl

[15] A. V. Zhuchok, Elements of dimonoid theory, Proceedings of Institute of Mathematics of NAS of Ukraine, 98, Mathematics and its Applications, Kiev, 2014, 304 pp. (Ukrainian) | Zbl

[16] A. V. Zhuchok, “Dimonoids and bar-units”, Sib. Math. J., 56:5 (2015), 827–840 | DOI | MR | Zbl

[17] A. V. Zhuchok, Yul. V. Zhuchok, “Free left $n$-dinilpotent dimonoids”, Semigroup Forum, 93:1 (2016), 161–179 | DOI | MR | Zbl

[18] A. V. Zhuchok, “Structure of relatively free dimonoids”, Commun. Algebra, 45:4 (2017), 1639–1656 | DOI | MR

[19] A. V. Zhuchok, “Free $n$-dinilpotent dimonoids”, Problems of Physics, Mathematics and Technics, 17:4 (2013), 43–46 | MR | Zbl

[20] S. J. Boyd, M. Gould, A. W. Nelson, “Interassociativity of semigroups”, Proceedings of the Tennessee Topology Conference (Nashville, TN, USA, 1996), World Scientific, Singapore, 1997, 33–51 | MR | Zbl

[21] A. V. Zhuchok, “Commutative dimonoids”, Algebra and Discrete Math., 2 (2009), 116–127 | MR | Zbl

[22] A. V. Zhuchok, “Free $n$-nilpotent dimonoids”, Algebra and Discrete Math., 16:2 (2013), 299–310 | MR | Zbl

[23] A. V. Zhuchok, A. B. Gorbatkov, “On the structure of dimonoids”, Semigroup Forum, 2016 | DOI | MR

[24] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, v. I, Math. Surveys, 7, Amer. Math. Soc., Providence, RI, 1961 ; v. II, 1967 | Zbl