Quadratic residues of the norm group in~sectorial domains
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 153-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the distribution of quadratic residues in the ring $G_{p^n}$, in the norm subgroup $E_n$ of multiplicative group $G_{p^n}^{*}$, is investigated. The asymptotic formula for the number $R(x,\phi)$ of quadratic residues in the sectorial domain of a special form has been constructed.
Keywords: quadratic residue, the norm group, Hecke Z-function, the gamma function, Dirichlet series, functional equation, Gaussian integers.
@article{ADM_2016_22_2_a0,
     author = {Lyubov Balyas and Pavel Varbanets},
     title = {Quadratic residues of the norm group in~sectorial domains},
     journal = {Algebra and discrete mathematics},
     pages = {153--170},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a0/}
}
TY  - JOUR
AU  - Lyubov Balyas
AU  - Pavel Varbanets
TI  - Quadratic residues of the norm group in~sectorial domains
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 153
EP  - 170
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a0/
LA  - en
ID  - ADM_2016_22_2_a0
ER  - 
%0 Journal Article
%A Lyubov Balyas
%A Pavel Varbanets
%T Quadratic residues of the norm group in~sectorial domains
%J Algebra and discrete mathematics
%D 2016
%P 153-170
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a0/
%G en
%F ADM_2016_22_2_a0
Lyubov Balyas; Pavel Varbanets. Quadratic residues of the norm group in~sectorial domains. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 153-170. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a0/

[1] D. Burgess, “The Distribution of quadratic residues and non-residues”, Mathematika, 4 (1957), 106–112 | DOI | MR | Zbl

[2] E. Hecke, “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen I”, Math. Z., 1 (1918), 357–376 ; “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen II”, Math. Z., 6 (1920), 11–51 | DOI | MR | Zbl | DOI | MR

[3] J. Kubilius, “On one problem of multidimensional analytic number theory”, Proc. Vilnius Univ., 4 (1955), 5–41 (Lithuanian) | MR

[4] H. Montgomery, R. Vaughan, “Exponential sums with multiplicative coefficients”, Inventiones math., 43 (1977), 69–82 | DOI | MR | Zbl

[5] S. Sergeev, P. Varbanets, “Exponential sums over norm group”, Siauliai Math.Seminar, 9:17 (2014), 83–92 | MR | Zbl

[6] Elias M. Stein, Guido Weiss, Introduction to Fourier analysis on Euclidian spaces, Princeton University Press, Princeton–New Jersey, 1971, 312 pp. | MR

[7] P. Varbanets, “Problem of circle in aritmetic progression”, Mat. Zametki, 8:6 (1970), 787–798 (Russian) | MR | Zbl

[8] P. Varbanec, P. Zarzycki, “Divisors of the Gaussian integers in an Arithmetic Progression”, Journal of Number Theory, 33:2 (1989), 152–169 | DOI | MR | Zbl

[9] S. Varbanets, “General Klosterman sums over ring of Gaussian integers”, Ukr. Math. J., 59:9 (2007), 1179–2000 | DOI | MR

[10] I. M. Vinogradov, Selectas, Academic Press USSR, Moscow, 1952 (Russian)

[11] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207 | DOI | MR | Zbl