Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_2_a0, author = {Lyubov Balyas and Pavel Varbanets}, title = {Quadratic residues of the norm group in~sectorial domains}, journal = {Algebra and discrete mathematics}, pages = {153--170}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a0/} }
Lyubov Balyas; Pavel Varbanets. Quadratic residues of the norm group in~sectorial domains. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 153-170. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a0/
[1] D. Burgess, “The Distribution of quadratic residues and non-residues”, Mathematika, 4 (1957), 106–112 | DOI | MR | Zbl
[2] E. Hecke, “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen I”, Math. Z., 1 (1918), 357–376 ; “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen II”, Math. Z., 6 (1920), 11–51 | DOI | MR | Zbl | DOI | MR
[3] J. Kubilius, “On one problem of multidimensional analytic number theory”, Proc. Vilnius Univ., 4 (1955), 5–41 (Lithuanian) | MR
[4] H. Montgomery, R. Vaughan, “Exponential sums with multiplicative coefficients”, Inventiones math., 43 (1977), 69–82 | DOI | MR | Zbl
[5] S. Sergeev, P. Varbanets, “Exponential sums over norm group”, Siauliai Math.Seminar, 9:17 (2014), 83–92 | MR | Zbl
[6] Elias M. Stein, Guido Weiss, Introduction to Fourier analysis on Euclidian spaces, Princeton University Press, Princeton–New Jersey, 1971, 312 pp. | MR
[7] P. Varbanets, “Problem of circle in aritmetic progression”, Mat. Zametki, 8:6 (1970), 787–798 (Russian) | MR | Zbl
[8] P. Varbanec, P. Zarzycki, “Divisors of the Gaussian integers in an Arithmetic Progression”, Journal of Number Theory, 33:2 (1989), 152–169 | DOI | MR | Zbl
[9] S. Varbanets, “General Klosterman sums over ring of Gaussian integers”, Ukr. Math. J., 59:9 (2007), 1179–2000 | DOI | MR
[10] I. M. Vinogradov, Selectas, Academic Press USSR, Moscow, 1952 (Russian)
[11] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207 | DOI | MR | Zbl