Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_1_a7, author = {A. P. Petravchuk}, title = {On nilpotent {Lie} algebras of derivations of fraction fields}, journal = {Algebra and discrete mathematics}, pages = {116--128}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a7/} }
A. P. Petravchuk. On nilpotent Lie algebras of derivations of fraction fields. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 116-128. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a7/
[1] V. V. Bavula, “Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras”, Izv. RAN. Ser. Mat., 77:6 (2013), 3–44 | DOI | MR | Zbl
[2] V. V. Bavula, “The groups of automorphisms of the Lie algebras of triangular polynomial derivations”, J. Pure Appl. Algebra, 218:5 (2014), 829–851 | DOI | MR | Zbl
[3] J. Draisma, “Transitive Lie algebras of vector fields: an overview”, Qual. Theory Dyn. Syst., 11:1 (2012), 39–60 | DOI | MR | Zbl
[4] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl
[5] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of vector fields in the real plane”, Proc. London Math. Soc. (3), 64:2 (1992), 339–368 | MR | Zbl
[6] D. Jordan, “On the ideals of a Lie algebra of derivations”, J. London Math. Soc. (2), 33:1 (1986), 33–39 | DOI | MR | Zbl
[7] S. Lie, Theorie der Transformationsgruppen, v. 3, Leipzig, 1893
[8] Ie. O. Makedonskyi and A. P. Petravchuk, “On nilpotent and solvable Lie algebras of derivations”, J. Algebra, 401 (2014), 245–257 | DOI | MR | Zbl
[9] R. O. Popovych, V. M. Boyko, M. O. Nesterenko and M. W. Lutfullin, “Realizations of real low-dimensional Lie algebras”, J. Phys. A, 36:26 (2003), 7337–7360 | DOI | MR | Zbl
[10] G. Post, “On the structure of graded transitive Lie algebras”, J. Lie Theory, 12:1 (2002), 265–288 | MR | Zbl