On nilpotent Lie algebras of derivations of fraction fields
Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 116-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb K$ be an arbitrary field of characteristic zero and $A$ an integral $\mathbb K$-domain. Denote by $R$ the fraction field of $A$ and by $W(A)=R\operatorname{Der}_{\mathbb K}A$, the Lie algebra of $\mathbb K$-derivations on $R$ obtained from $\operatorname{Der}_{\mathbb K}A$ via multiplication by elements of $R$. If $L\subseteq W(A)$ is a subalgebra of $W(A)$ denote by $\operatorname{rk}_{R}L$ the dimension of the vector space $RL$ over the field $R$ and by $F=R^{L}$ the field of constants of $L$ in $R$. Let $L$ be a nilpotent subalgebra $L\subseteq W(A)$ with $\operatorname{rk}_{R}L\leq 3$. It is proven that the Lie algebra $FL$ (as a Lie algebra over the field $F$) is isomorphic to a finite dimensional subalgebra of the triangular Lie subalgebra $u_{3}(F)$ of the Lie algebra $\operatorname{Der} F[x_{1}, x_{2}, x_{3}]$, where $u_{3}(F)=\{f(x_{2}, x_{3})\frac{\partial}{\partial x_{1}}+g(x_{3})\frac{\partial}{\partial x_{2}}+c\frac{\partial}{\partial x_{3}}\}$ with $f\in F[x_{2}, x_{3}]$, $g\in F[x_3]$, $c\in F$.
Keywords: Lie algebra, vector field, nilpotent algebra, derivation.
@article{ADM_2016_22_1_a7,
     author = {A. P. Petravchuk},
     title = {On nilpotent {Lie} algebras of derivations of fraction fields},
     journal = {Algebra and discrete mathematics},
     pages = {116--128},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a7/}
}
TY  - JOUR
AU  - A. P. Petravchuk
TI  - On nilpotent Lie algebras of derivations of fraction fields
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 116
EP  - 128
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a7/
LA  - en
ID  - ADM_2016_22_1_a7
ER  - 
%0 Journal Article
%A A. P. Petravchuk
%T On nilpotent Lie algebras of derivations of fraction fields
%J Algebra and discrete mathematics
%D 2016
%P 116-128
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a7/
%G en
%F ADM_2016_22_1_a7
A. P. Petravchuk. On nilpotent Lie algebras of derivations of fraction fields. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 116-128. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a7/

[1] V. V. Bavula, “Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras”, Izv. RAN. Ser. Mat., 77:6 (2013), 3–44 | DOI | MR | Zbl

[2] V. V. Bavula, “The groups of automorphisms of the Lie algebras of triangular polynomial derivations”, J. Pure Appl. Algebra, 218:5 (2014), 829–851 | DOI | MR | Zbl

[3] J. Draisma, “Transitive Lie algebras of vector fields: an overview”, Qual. Theory Dyn. Syst., 11:1 (2012), 39–60 | DOI | MR | Zbl

[4] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl

[5] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of vector fields in the real plane”, Proc. London Math. Soc. (3), 64:2 (1992), 339–368 | MR | Zbl

[6] D. Jordan, “On the ideals of a Lie algebra of derivations”, J. London Math. Soc. (2), 33:1 (1986), 33–39 | DOI | MR | Zbl

[7] S. Lie, Theorie der Transformationsgruppen, v. 3, Leipzig, 1893

[8] Ie. O. Makedonskyi and A. P. Petravchuk, “On nilpotent and solvable Lie algebras of derivations”, J. Algebra, 401 (2014), 245–257 | DOI | MR | Zbl

[9] R. O. Popovych, V. M. Boyko, M. O. Nesterenko and M. W. Lutfullin, “Realizations of real low-dimensional Lie algebras”, J. Phys. A, 36:26 (2003), 7337–7360 | DOI | MR | Zbl

[10] G. Post, “On the structure of graded transitive Lie algebras”, J. Lie Theory, 12:1 (2002), 265–288 | MR | Zbl