Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers
Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 102-115

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu\in (0,1)$ be a given parameter, $\nu\equiv 1-\mu$. We consider $\Delta^{\mu}$-representation of numbers $x=\Delta^{\mu}_{a_1a_2\ldots a_n\ldots}$ belonging to $(0,1]$ based on their expansion in alternating series or finite sum in the form: $$ x=\sum_n(B_{n}-{B'_n})\equiv \Delta^{\mu}_{a_1a_2\ldots a_n\ldots}, $$ where $B_n=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n-2}}$, ${B^{\prime}_n}=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n}}$, $a_i\!\in\! \mathbb{N}$. This representation has an infinite alphabet $\{1,2,\ldots\}$, zero redundancy and $N$-self-similar geometry. In the paper, classes of continuous strictly increasing functions preserving “tails” of $\Delta^{\mu}$-representation of numbers are constructed. Using these functions we construct also continuous transformations of $(0,1]$. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.
Keywords: $\Delta^{\mu}$-representation, cylinder, tail set, function preserving “tails” of $\Delta^{\mu}$-representation of numbers, continuous transformation of $(0,1]$ preserving “tails” of $\Delta^{\mu}$-representation of numbers
Mots-clés : group of transformations.
@article{ADM_2016_22_1_a6,
     author = {Tetiana M. Isaieva and Mykola V. Pratsiovytyi},
     title = {Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers},
     journal = {Algebra and discrete mathematics},
     pages = {102--115},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/}
}
TY  - JOUR
AU  - Tetiana M. Isaieva
AU  - Mykola V. Pratsiovytyi
TI  - Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 102
EP  - 115
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/
LA  - en
ID  - ADM_2016_22_1_a6
ER  - 
%0 Journal Article
%A Tetiana M. Isaieva
%A Mykola V. Pratsiovytyi
%T Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers
%J Algebra and discrete mathematics
%D 2016
%P 102-115
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/
%G en
%F ADM_2016_22_1_a6
Tetiana M. Isaieva; Mykola V. Pratsiovytyi. Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 102-115. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/