Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_1_a6, author = {Tetiana M. Isaieva and Mykola V. Pratsiovytyi}, title = {Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers}, journal = {Algebra and discrete mathematics}, pages = {102--115}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/} }
TY - JOUR AU - Tetiana M. Isaieva AU - Mykola V. Pratsiovytyi TI - Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers JO - Algebra and discrete mathematics PY - 2016 SP - 102 EP - 115 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/ LA - en ID - ADM_2016_22_1_a6 ER -
%0 Journal Article %A Tetiana M. Isaieva %A Mykola V. Pratsiovytyi %T Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers %J Algebra and discrete mathematics %D 2016 %P 102-115 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/ %G en %F ADM_2016_22_1_a6
Tetiana M. Isaieva; Mykola V. Pratsiovytyi. Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 102-115. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a6/
[1] G. Alkauskas, “An asymptotic formula for the moments of the Minkowski question mark function in the interval $[0,1]$”, Lithuanian Mathematical Journal, 48:4 (2008), 357–367 | DOI | MR | Zbl
[2] G. Alkauskas, “Generating and zeta functions, structure, spectral and analytic properties of the moments of Minkowski question mark function”, Involve, 2:2 (2009), 121–159 | DOI | MR | Zbl
[3] G. Alkauskas, “The Minkowski question mark function: explicit series for the dyadic period function and moments”, Mathematics of Computation, 79:269 (2010), 383–418 | DOI | MR | Zbl
[4] G. Alkauskas, “Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function”, Ramanujan J., 25:3 (2011), 359–367 | DOI | MR | Zbl
[5] G. Alkauskas, “The Minkowski $?(x)$ function and Salem's problem”, C.R. Acad. Sci. Paris, 350:3–4 (2012), 137–140 | DOI | MR | Zbl
[6] A. Denjoy, “Sur une fonction de Minkowski”, C. R. Acad. Sci., Paris, 194 (1932), 44–46
[7] A. Denjoy, “Sur une fonction réelle de Minkowski”, J. Math. Pures Appl., 17 (1938), 105–151
[8] A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl
[9] A. Ya. Khinchin, Continued fractions, Nauka, Moscow, 1978, 116 pp. (Russian)
[10] J. R. Kinney, “Note on a singular function of Minkowski”, Proc. Amer. Math. Soc., 11:5 (1960), 788–794 | DOI | MR | Zbl
[11] M. Kesseböhmer, B. Stratmann, “Fractal analysis for sets of non-differentiability of Minkowski's question mark function”, J. Number Theory, 128:9 (2008), 2663–2686 | DOI | MR | Zbl
[12] M. Lamberger, “On a family of singular measures related to Minkowski's $?(x)$ function”, Indag. Math., 17:1 (2006), 45–63 | DOI | MR | Zbl
[13] H. Minkowski, Gesammelte Abhandlungen, v. 2, B. G. Teubner, Berlin, 1911 | Zbl
[14] O. R. Beaver, T. Garrity, “A two-dimensional Minkowski $?(x)$ function”, J. Number Theory, 107:1 (2004), 105–134 | DOI | MR | Zbl
[15] G. Panti, “Multidimensional continued fractions and a Minkowski function”, Monatsh. Math., 154:3 (2008), 247–264 | DOI | MR | Zbl
[16] J. Paradis, P. Viader, L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number. Theory, 73:2 (1998), 212–227 | DOI | MR | Zbl
[17] M. V. Pratsiovytyi, Fractal approach to investigation of singular probability distributions, Natl. Pedagog. Mykhailo Drahomanov Univ. Publ., Kyiv, 1998, 296 pp. (Ukrainian)
[18] O. Baranovskyi, Yu. Kondratiev, M. Pratsiovytyi, Transformations and functions preserving tails of $E$-representation of numbers, Manuscript, 2015
[19] M. V. Pratsiovytyi, T. M. Isaieva, “$\Delta^{\mu}$-representation as a generalization of $\Delta^{\sharp}$-representation and a foundation of new metric theory of real numbers”, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky, 16 (2014), 164–186 (Ukrainian)
[20] M. V. Pratsiovytyi, T. M. Isaieva, “Encoding of real numbers with infinite alphabet and base 2”, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky, 15 (2013), 6–23 (Ukrainian)
[21] M. V. Pratsiovytyi, T. M. Isaieva, “On some applications of $\Delta^{\sharp}$-representation of real numbers”, Bukovyn. Mat. Zhurn., 2:2–3 (2014), 187–197 (Ukrainian)
[22] M. V. Pratsiovytyi, T. M. Isaieva, “Fractal functions related to $\Delta^{\mu}$-representation of numbers”, Bukovyn. Mat. Zhurn., 3:3–4 (2015), 156–165 (Ukrainian)
[23] M. V. Pratsiovytyi, A. V. Kalashnikov, “Singularity of functions of one-parameter class containing the Minkowski function”, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky, 12 (2011), 59–65 (Ukrainian)
[24] M. V. Pratsiovytyi, A. V. Kalashnikov, V. K. Bezborodov, “On one class of singular functions containing classic Minkowski function”, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky, 11 (2010), 207–213 (Ukrainian)
[25] R. Salem, “On some singular monotonic function which are strictly increasing”, Trans. Amer. Math. Soc., 53 (1943), 423–439 | DOI | MR