Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_1_a4, author = {Asha B. Ganagi and Harishchandra S. Ramane}, title = {Hamming distance between the strings generated by adjacency matrix of a graph and their sum}, journal = {Algebra and discrete mathematics}, pages = {82--93}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a4/} }
TY - JOUR AU - Asha B. Ganagi AU - Harishchandra S. Ramane TI - Hamming distance between the strings generated by adjacency matrix of a graph and their sum JO - Algebra and discrete mathematics PY - 2016 SP - 82 EP - 93 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a4/ LA - en ID - ADM_2016_22_1_a4 ER -
%0 Journal Article %A Asha B. Ganagi %A Harishchandra S. Ramane %T Hamming distance between the strings generated by adjacency matrix of a graph and their sum %J Algebra and discrete mathematics %D 2016 %P 82-93 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a4/ %G en %F ADM_2016_22_1_a4
Asha B. Ganagi; Harishchandra S. Ramane. Hamming distance between the strings generated by adjacency matrix of a graph and their sum. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a4/
[1] S. Bang, E. R. van Dam, J. H. Koolen, “Spectral characterization of the Hamming graphs”, Linear Algebra Appl., 429 (2008), 2678–2686 | DOI | MR | Zbl
[2] V. Chepoi, “$d$-connectivity and isometric subgraphs of Hamming graphs”, Cybernetics, 1 (1988), 6–9 | DOI | MR
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969 | MR | Zbl
[4] W. Imrich, S. Klavžar, “A simple $O(mn)$ algorithm for recognizing Hamming graphs”, Bull. Inst. Combin. Appl., 9 (1993), 45–56 | MR | Zbl
[5] W. Imrich, S. Klavžar, “On the complexity of recognizing Hamming graphs and related classes of graphs”, European J. Combin., 17 (1996), 209–221 | DOI | MR | Zbl
[6] W. Imrich, S. Klavžar, “Recognizing Hamming graphs in linear time and space”, Inform. Process. Lett., 63 (1997), 91–95 | DOI | MR | Zbl
[7] S. Klavžar, I. Peterin, “Characterizing subgraphs of Hamming graphs”, J. Graph Theory, 49 (2005), 302–312 | DOI | MR | Zbl
[8] B. Kolman, R. Busby, S. C. Ross, Discrete Mathematical Structures, Prentice Hall of India, New Delhi, 2002
[9] M. Mollard, “Two characterizations of generalized hypercubes”, Discrete Math., 93 (1991), 63–74 | DOI | MR | Zbl
[10] B. Park, Y. Sano, “The competition numbers of Hamming graphs with diameter at most three”, J. Korean Math. Soc., 48 (2011), 691–702 | DOI | MR | Zbl
[11] R. Squier, B. Torrence, A. Vogt, “The number of edges in a subgraph of a Hamming graph”, Appl. Math. Lett., 14 (2001), 701–705 | DOI | MR | Zbl
[12] D. B. West, Introduction to Graph Theory, PHI Learning, New Delhi, 2009
[13] E. Wilkeit, “Isometric embeddings in Hamming graphs”, J. Combin. Theory Ser. B, 50 (1990), 179–197 | DOI | MR | Zbl
[14] P. Winkler, “Isometric embeddings in products of complete graphs”, Discrete Appl. Math., 7 (1984), 221–225 | DOI | MR | Zbl