Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_21_2_a9, author = {Robert Wisbauer}, title = {Weak {Frobenius} monads and {Frobenius} bimodules}, journal = {Algebra and discrete mathematics}, pages = {287--308}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/} }
Robert Wisbauer. Weak Frobenius monads and Frobenius bimodules. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 287-308. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/
[1] Böhm G., “The weak theory of monads”, Adv. Math., 225:1 (2010), 1–32 | DOI | MR | Zbl
[2] Böhm G. and Gómez-Torrecillas J., “Firm Frobenius monads and firm Frobenius algebras”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56:3 (2013), 281–298 | MR | Zbl
[3] Böhm G., Lack S. and Street R., “Idempotent splittings, colimit completion, and weak aspects of the theory of monads”, J. Pure Appl. Algebra, 216 (2012), 385–403 | DOI | MR | Zbl
[4] Eilenberg S. and Moore J. C., “Adjoint functors and triples”, Ill. J. Math., 9 (1965), 381–398 | MR | Zbl
[5] Mesablishvili B. and Wisbauer R., “QF functors and (co)monads,”, J. Algebra, 376 (2013), 101–122 | DOI | MR | Zbl
[6] Street R., “Frobenius monads and pseudomonoids”, J. Math. Phys., 45:10 (2004), 3930–3948 | DOI | MR | Zbl
[7] Sovrem. Mat. Prilozh., 74 (2011) | DOI | MR | Zbl
[8] Wisbauer R., “Regular pairings of functors and weak (co)monads”, Algebra Discrete Math., 15:1 (2013), 127–154 | MR | Zbl