Weak Frobenius monads and Frobenius bimodules
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 287-308
Voir la notice de l'article provenant de la source Math-Net.Ru
As observed by Eilenberg and Moore (1965), for a monad $F$ with right adjoint comonad $G$ on any category $\mathbb{A}$, the category of unital $F$-modules $\mathbb{A}_F$ is isomorphic to the category of counital $G$-comodules $\mathbb{A}^G$. The monad $F$ is Frobenius provided we have $F=G$ and then $\mathbb{A}_F\simeq \mathbb{A}^F$. Here we investigate which kind of isomorphisms can be obtained for non-unital monads and non-counital comonads. For this we observe that the mentioned isomorphism is in fact an isomorphisms between $\mathbb{A}_F$ and the category of bimodules $\mathbb{A}^F_F$ subject to certain compatibility conditions (Frobenius bimodules). Eventually we obtain that for a weak monad $(F,m,\eta)$ and a weak comonad $(F,\delta,\varepsilon)$ satisfying $Fm\cdot \delta F = \delta \cdot m = mF\cdot F\delta$ and $m\cdot F\eta = F\varepsilon\cdot \delta$, the category of compatible $F$-modules is isomorphic to the category of compatible Frobenius bimodules and the category of compatible $F$-comodules.
Keywords:
pairing of functors, adjoint functors, weak (co)monads, Frobenius monads, separability.
Mots-clés : firm modules, cofirm comodules
Mots-clés : firm modules, cofirm comodules
@article{ADM_2016_21_2_a9,
author = {Robert Wisbauer},
title = {Weak {Frobenius} monads and {Frobenius} bimodules},
journal = {Algebra and discrete mathematics},
pages = {287--308},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/}
}
Robert Wisbauer. Weak Frobenius monads and Frobenius bimodules. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 287-308. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/