Weak Frobenius monads and Frobenius bimodules
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 287-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

As observed by Eilenberg and Moore (1965), for a monad $F$ with right adjoint comonad $G$ on any category $\mathbb{A}$, the category of unital $F$-modules $\mathbb{A}_F$ is isomorphic to the category of counital $G$-comodules $\mathbb{A}^G$. The monad $F$ is Frobenius provided we have $F=G$ and then $\mathbb{A}_F\simeq \mathbb{A}^F$. Here we investigate which kind of isomorphisms can be obtained for non-unital monads and non-counital comonads. For this we observe that the mentioned isomorphism is in fact an isomorphisms between $\mathbb{A}_F$ and the category of bimodules $\mathbb{A}^F_F$ subject to certain compatibility conditions (Frobenius bimodules). Eventually we obtain that for a weak monad $(F,m,\eta)$ and a weak comonad $(F,\delta,\varepsilon)$ satisfying $Fm\cdot \delta F = \delta \cdot m = mF\cdot F\delta$ and $m\cdot F\eta = F\varepsilon\cdot \delta$, the category of compatible $F$-modules is isomorphic to the category of compatible Frobenius bimodules and the category of compatible $F$-comodules.
Keywords: pairing of functors, adjoint functors, weak (co)monads, Frobenius monads, separability.
Mots-clés : firm modules, cofirm comodules
@article{ADM_2016_21_2_a9,
     author = {Robert Wisbauer},
     title = {Weak {Frobenius} monads and {Frobenius} bimodules},
     journal = {Algebra and discrete mathematics},
     pages = {287--308},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/}
}
TY  - JOUR
AU  - Robert Wisbauer
TI  - Weak Frobenius monads and Frobenius bimodules
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 287
EP  - 308
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/
LA  - en
ID  - ADM_2016_21_2_a9
ER  - 
%0 Journal Article
%A Robert Wisbauer
%T Weak Frobenius monads and Frobenius bimodules
%J Algebra and discrete mathematics
%D 2016
%P 287-308
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/
%G en
%F ADM_2016_21_2_a9
Robert Wisbauer. Weak Frobenius monads and Frobenius bimodules. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 287-308. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a9/

[1] Böhm G., “The weak theory of monads”, Adv. Math., 225:1 (2010), 1–32 | DOI | MR | Zbl

[2] Böhm G. and Gómez-Torrecillas J., “Firm Frobenius monads and firm Frobenius algebras”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56:3 (2013), 281–298 | MR | Zbl

[3] Böhm G., Lack S. and Street R., “Idempotent splittings, colimit completion, and weak aspects of the theory of monads”, J. Pure Appl. Algebra, 216 (2012), 385–403 | DOI | MR | Zbl

[4] Eilenberg S. and Moore J. C., “Adjoint functors and triples”, Ill. J. Math., 9 (1965), 381–398 | MR | Zbl

[5] Mesablishvili B. and Wisbauer R., “QF functors and (co)monads,”, J. Algebra, 376 (2013), 101–122 | DOI | MR | Zbl

[6] Street R., “Frobenius monads and pseudomonoids”, J. Math. Phys., 45:10 (2004), 3930–3948 | DOI | MR | Zbl

[7] Sovrem. Mat. Prilozh., 74 (2011) | DOI | MR | Zbl

[8] Wisbauer R., “Regular pairings of functors and weak (co)monads”, Algebra Discrete Math., 15:1 (2013), 127–154 | MR | Zbl