The comb-like representations of cellular ordinal balleans
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 282-286

Voir la notice de l'article provenant de la source Math-Net.Ru

Given two ordinal $\lambda$ and $\gamma$, let $f:[0,\lambda) \rightarrow [0,\gamma)$ be a function such that, for each $\alpha\gamma$, $\sup\{f(t): t\in[0, \alpha]\}\gamma.$ We define a mapping $d_{f}: [0,\lambda)\times [0,\lambda) \longrightarrow [0,\gamma)$ by the rule: if $x$ then $d_{f}(x,y)= d_{f}(y,x)= \sup\{f(t): t\in(x,y]\}$, $d(x,x)=0$. The pair $([0,\lambda), d_{f})$ is called a $\gamma-$comb defined by $f$. We show that each cellular ordinal ballean can be represented as a $\gamma-$comb. In General Asymptology, cellular ordinal balleans play a part of ultrametric spaces.
Keywords: ultrametric space, cellular ballean, ordinal ballean
Mots-clés : $(\lambda,\gamma)$-comb.
@article{ADM_2016_21_2_a8,
     author = {Igor Protasov and Ksenia Protasova},
     title = {The comb-like representations of cellular ordinal balleans},
     journal = {Algebra and discrete mathematics},
     pages = {282--286},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a8/}
}
TY  - JOUR
AU  - Igor Protasov
AU  - Ksenia Protasova
TI  - The comb-like representations of cellular ordinal balleans
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 282
EP  - 286
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a8/
LA  - en
ID  - ADM_2016_21_2_a8
ER  - 
%0 Journal Article
%A Igor Protasov
%A Ksenia Protasova
%T The comb-like representations of cellular ordinal balleans
%J Algebra and discrete mathematics
%D 2016
%P 282-286
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a8/
%G en
%F ADM_2016_21_2_a8
Igor Protasov; Ksenia Protasova. The comb-like representations of cellular ordinal balleans. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 282-286. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a8/