The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 264-281
Voir la notice de l'article provenant de la source Math-Net.Ru
Base (minimal generating set) of the Sylow 2-subgroup of $S_{2^n}$ is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup $P_n(2)$ of $S_{2^n}$ acts by conjugation on the set of all bases. In presented paper the stabilizer of the set of all diagonal bases in $S_n(2)$ is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly $2^{n-1}$ diagonal bases and $2^{2^n-2n}$ bases at all. Recursive construction of Cayley graphs of $P_n(2)$ on diagonal bases ($n\geq2$) is proposed.
Keywords:
Sylow $p$-subgroup, group base, wreath product of groups, Cayley graphs.
@article{ADM_2016_21_2_a7,
author = {Bart{\l}omiej Pawlik},
title = {The action of {Sylow} 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their {Cayley} graphs},
journal = {Algebra and discrete mathematics},
pages = {264--281},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/}
}
TY - JOUR AU - Bartłomiej Pawlik TI - The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs JO - Algebra and discrete mathematics PY - 2016 SP - 264 EP - 281 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/ LA - en ID - ADM_2016_21_2_a7 ER -
%0 Journal Article %A Bartłomiej Pawlik %T The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs %J Algebra and discrete mathematics %D 2016 %P 264-281 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/ %G en %F ADM_2016_21_2_a7
Bartłomiej Pawlik. The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 264-281. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/