Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_21_2_a7, author = {Bart{\l}omiej Pawlik}, title = {The action of {Sylow} 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their {Cayley} graphs}, journal = {Algebra and discrete mathematics}, pages = {264--281}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/} }
TY - JOUR AU - Bartłomiej Pawlik TI - The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs JO - Algebra and discrete mathematics PY - 2016 SP - 264 EP - 281 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/ LA - en ID - ADM_2016_21_2_a7 ER -
%0 Journal Article %A Bartłomiej Pawlik %T The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs %J Algebra and discrete mathematics %D 2016 %P 264-281 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/ %G en %F ADM_2016_21_2_a7
Bartłomiej Pawlik. The action of Sylow 2-subgroups of~symmetric groups on the set of bases and the problem of~isomorphism of their Cayley graphs. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 264-281. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a7/
[1] A. Bier, V. Sushchansky, “Kaluzhnin’s representations of Sylow $p$-subgroups of automorphism groups of $p$-adic rooted trees”, Algebra Discrete Math., 19:1 (2015), 19–38 | MR | Zbl
[2] D. Gorenstein, Finite Groups, Harper's series in modern mathematics, Harper Row, New York, 1968 | MR | Zbl
[3] R. I. Grigorchuk, V. V. Nekrashevych, V. I. Sushchanskii, “Automata, Dynamical Systems, and Groups”, Proc. Steklov Inst. Math., 231 (2000), 134–214 | MR | Zbl
[4] L. Kaluzhnin, “La structure des $p$-groupes de Sylow des groupes symetriques finis”, Ann. Sci. l'Ecole Norm. Sup., 65 (1948), 239–272
[5] B. Pawlik, “Involutive bases of Sylow 2-subgroups of symmetric and alternating groups”, Zesz. Nauk. Pol. Sl. Mat. Stos., 5 (2015), 35–42
[6] V. Sushchansky, A. Słupik, “Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups”, Algebra Discrete Math., 2009, no. 4, 167–184 | MR | Zbl