Involution rings with unique minimal *-biideal
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 255-263
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized.
Keywords:
involution, biideal, nilpotent ring, local ring, subdirectly irreducible ring, Jacobson radical.
@article{ADM_2016_21_2_a6,
author = {D. I. C. Mendes},
title = {Involution rings with unique minimal *-biideal},
journal = {Algebra and discrete mathematics},
pages = {255--263},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a6/}
}
D. I. C. Mendes. Involution rings with unique minimal *-biideal. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 255-263. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a6/