Generalization of primal superideals
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 202-213

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative super-ring with unity $1\not=0$. A proper superideal of $R$ is a superideal $I$ of $R$ such that $I\not=R$. Let $\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\varnothing\}$ be any function, where $\mathfrak{I}(R)$ denotes the set of all proper superideals of $R$. A homogeneous element $a\in R$ is $\phi$-prime to $I$ if $ra\in I-\phi(I)$ where $r$ is a homogeneous element in $R$, then $r\in I$. We denote by $\nu_\phi(I)$ the set of all homogeneous elements in $R$ that are not $\phi$-prime to $I$. We define $I$ to be $\phi$-primal if the set $$ P=\begin{cases}[(\nu_\phi(I))_0+(\nu_\phi(I))_1\cup\{0\}]+\phi(I) :\quad {\rm if}\ \phi\not=\phi_\emptyset\\ (\nu_\phi(I))_0+(\nu_\phi(I))_1 :\quad {\rm if}\ \phi=\phi_\emptyset\end{cases} $$ forms a superideal of $R$. For example if we take $\phi_\emptyset(I)=\emptyset$ (resp. $\phi_0(I)=0$), a $\phi$-primal superideal is a primal superideal (resp., a weakly primal superideal). In this paper we study several generalizations of primal superideals of $R$ and their properties.
Keywords: primal superideal, $\phi$-$P$-primal superideal, $\phi$-prime superideal.
@article{ADM_2016_21_2_a3,
     author = {Ameer Jaber},
     title = {Generalization of primal superideals},
     journal = {Algebra and discrete mathematics},
     pages = {202--213},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/}
}
TY  - JOUR
AU  - Ameer Jaber
TI  - Generalization of primal superideals
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 202
EP  - 213
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/
LA  - en
ID  - ADM_2016_21_2_a3
ER  - 
%0 Journal Article
%A Ameer Jaber
%T Generalization of primal superideals
%J Algebra and discrete mathematics
%D 2016
%P 202-213
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/
%G en
%F ADM_2016_21_2_a3
Ameer Jaber. Generalization of primal superideals. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 202-213. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/