Generalization of primal superideals
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 202-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative super-ring with unity $1\not=0$. A proper superideal of $R$ is a superideal $I$ of $R$ such that $I\not=R$. Let $\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\varnothing\}$ be any function, where $\mathfrak{I}(R)$ denotes the set of all proper superideals of $R$. A homogeneous element $a\in R$ is $\phi$-prime to $I$ if $ra\in I-\phi(I)$ where $r$ is a homogeneous element in $R$, then $r\in I$. We denote by $\nu_\phi(I)$ the set of all homogeneous elements in $R$ that are not $\phi$-prime to $I$. We define $I$ to be $\phi$-primal if the set $$ P=\begin{cases}[(\nu_\phi(I))_0+(\nu_\phi(I))_1\cup\{0\}]+\phi(I) :\quad {\rm if}\ \phi\not=\phi_\emptyset\\ (\nu_\phi(I))_0+(\nu_\phi(I))_1 :\quad {\rm if}\ \phi=\phi_\emptyset\end{cases} $$ forms a superideal of $R$. For example if we take $\phi_\emptyset(I)=\emptyset$ (resp. $\phi_0(I)=0$), a $\phi$-primal superideal is a primal superideal (resp., a weakly primal superideal). In this paper we study several generalizations of primal superideals of $R$ and their properties.
Keywords: primal superideal, $\phi$-$P$-primal superideal, $\phi$-prime superideal.
@article{ADM_2016_21_2_a3,
     author = {Ameer Jaber},
     title = {Generalization of primal superideals},
     journal = {Algebra and discrete mathematics},
     pages = {202--213},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/}
}
TY  - JOUR
AU  - Ameer Jaber
TI  - Generalization of primal superideals
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 202
EP  - 213
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/
LA  - en
ID  - ADM_2016_21_2_a3
ER  - 
%0 Journal Article
%A Ameer Jaber
%T Generalization of primal superideals
%J Algebra and discrete mathematics
%D 2016
%P 202-213
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/
%G en
%F ADM_2016_21_2_a3
Ameer Jaber. Generalization of primal superideals. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 202-213. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a3/

[1] A. Jaber, “Central simple superalgebras with anti-automorphisms of order two of the first kind”, J. Algebra, 323:7 (2010), 1849–1859 | DOI | MR | Zbl

[2] A. Jaber, “Central simple superalgebras with superantiautomorphism of order two of the second kind”, Turkish Journal of Mathematics, 35 (2011), 11–21 | MR | Zbl

[3] A. Jaber, “Division $\mathbb{Z}_3$-Algebras”, International Electronic Journal of Algebra, 7 (2010), 1–11 | MR | Zbl

[4] A. Jaber, “Existence of Pseudo-Superinvolutions of the First Kind”, International Journal of Mathematics and Mathematical Sciences, 386468, 12 pp. | DOI | MR | Zbl

[5] A. Jaber, “Primitive $\mathbb{Z}_3$-algebras with $\mathbb{Z}_3$-involution”, Far East Journal of Mathematical Sciences, 48:2 (2011), 225–244 | MR | Zbl

[6] A. Jaber, “Product of graded submodules”, Turkish Journal of Mathematics, 35 (2011), 1–12 | MR

[7] A. Jaber, “$\Delta$-supergraded Submodules”, International Mathematical Forum, 5:22 (2010), 1091–1104 | MR | Zbl

[8] A. Jaber, “Weakly Primal Graded Superideals”, Tamkang Journal of Mathematics, 43:1 (2012), 123–135 | DOI | MR | Zbl

[9] D. Anderson, M. Bataineh, “Generalizations of prime ideals”, Comm. in Algebra, 36 (2008), 686–696 | DOI | MR | Zbl

[10] E. Atani, Y. Darani, “On Weakly Primal Ideals (I)”, Demonstratio Math., 40 (2007), 23–32 | MR | Zbl

[11] L. Fuchs, “On Primal ideals”, Proc. Amer. Math. Soc., 1 (1950), 1–6 | DOI | MR | Zbl

[12] Y. A. Bahturin, A. Giambruno, “Group Gradings on associative algebras with involution”, Canad. Math. Bull., 51 (2008), 182–194 | DOI | MR | Zbl

[13] Y. Darani, “Generalizations of primal ideals in commutative rings”, Matematiqki Vesnik, 64:1 (2012), 25–31 | MR | Zbl