Co-intersection graph of submodules of~a~module
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 128-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a unitary left $R$-module where $R$ is a ring with identity. The co-intersection graph of proper submodules of $M$, denoted by $\Omega(M)$, is an undirected simple graph whose the vertex set $V(\Omega)$ is a set of all non-trivial submodules of $M$ and there is an edge between two distinct vertices $N$ and $K$ if and only if $N+K\neq M$. In this paper we investigate connections between the graph-theoretic properties of $\Omega(M)$ and some algebraic properties of modules . We characterize all of modules for which the co-intersection graph of submodules is connected. Also the diameter and the girth of $\Omega(M)$ are determined. We study the clique number and the chromatic number of $\Omega(M)$.
Keywords: co-intersection graph, clique number, chromatic number.
@article{ADM_2016_21_1_a8,
     author = {Lotf Ali Mahdavi and Yahya Talebi},
     title = {Co-intersection graph of submodules of~a~module},
     journal = {Algebra and discrete mathematics},
     pages = {128--143},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a8/}
}
TY  - JOUR
AU  - Lotf Ali Mahdavi
AU  - Yahya Talebi
TI  - Co-intersection graph of submodules of~a~module
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 128
EP  - 143
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a8/
LA  - en
ID  - ADM_2016_21_1_a8
ER  - 
%0 Journal Article
%A Lotf Ali Mahdavi
%A Yahya Talebi
%T Co-intersection graph of submodules of~a~module
%J Algebra and discrete mathematics
%D 2016
%P 128-143
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a8/
%G en
%F ADM_2016_21_1_a8
Lotf Ali Mahdavi; Yahya Talebi. Co-intersection graph of submodules of~a~module. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 128-143. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a8/

[1] S. Akbari, A. Tavallaee and S. Khalashi Ghezelahmad, “Intersection graph of submodule of a module”, J. Algebra and Its Applications, 11:1 (2012), 1250019, 8 pp. | DOI | MR | Zbl

[2] A. Amini, B. Amini and M. H. Shirdareh Haghighi, “On a graph of ideals”, Acta Math. Hungar., 134:3 (2012), 369–384 | DOI | MR | Zbl

[3] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992 | MR | Zbl

[4] J. Bosak, “The graphs of semigroups”, Theory of Graphs and Application, Academic Press, New York, 1964, 119–125 | MR

[5] I. Chakrabarty, S. Gosh, T. K. Mukherjee and M. K. Sen, “Intersection graphs of ideals of rings”, Discrete Math., 309 (2009), 5381–5392 | DOI | MR | Zbl

[6] G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, Inc., New York, 1993 | MR

[7] B. Csakany and G. Pollak, “The graph of subgroups of a finite group”, Czechoslovak Math. J., 19 (1969), 241–247 | MR | Zbl

[8] D. G. Northcott, Lessons on Rings, Modules and Multiplicaties, Cambridge University Press, Cambridge, 1968 | MR

[9] K. M. Rangaswamy, “Modules with finite spanning dimension”, Canad. Math. Bull., 20:2 (1977), 255–262 | DOI | MR | Zbl

[10] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991 | MR | Zbl

[11] B. Zelinka, “Intersection graphs of finite abelian groups”, Czechoslovak Math. J, 25:2 (1975), 171–174 | MR | Zbl