The groups whose cyclic subgroups are either ascendant or almost self-normalizing
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
Keywords: locally finite group, self-normalizing subgroup, ascendant subgroup, subnormal subgroup, Gruenberg radical, Baer radical.
@article{ADM_2016_21_1_a7,
     author = {Leonid A. Kurdachenko and Aleksandr A. Pypka and Nikolaj N. Semko},
     title = {The groups whose cyclic subgroups are either ascendant or almost self-normalizing},
     journal = {Algebra and discrete mathematics},
     pages = {111--127},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/}
}
TY  - JOUR
AU  - Leonid A. Kurdachenko
AU  - Aleksandr A. Pypka
AU  - Nikolaj N. Semko
TI  - The groups whose cyclic subgroups are either ascendant or almost self-normalizing
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 111
EP  - 127
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/
LA  - en
ID  - ADM_2016_21_1_a7
ER  - 
%0 Journal Article
%A Leonid A. Kurdachenko
%A Aleksandr A. Pypka
%A Nikolaj N. Semko
%T The groups whose cyclic subgroups are either ascendant or almost self-normalizing
%J Algebra and discrete mathematics
%D 2016
%P 111-127
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/
%G en
%F ADM_2016_21_1_a7
Leonid A. Kurdachenko; Aleksandr A. Pypka; Nikolaj N. Semko. The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/

[1] A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal, T. Pedraza, “Infinite groups with many permutable subgroups”, Rev. Mat. Iberoamericana, 24 (2008), 745–764 | DOI | MR | Zbl

[2] S. N. Chernikov, “On special $p$-groups”, Mat. Sb., 27 (1950), 185–200 | MR | Zbl

[3] M. R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, World Scientific, Singapore, 1994 | MR | Zbl

[4] L. Fuchs, Infinite abelian groups, v. I., Academic Press, New York, 1970 | MR | Zbl

[5] L. Fuchs, Infinite abelian groups, v. II, Academic Press, New York, 1973 | MR | Zbl

[6] K. W. Gruenberg, “The Engel elements of a soluble group”, Illinois J. Math., 3 (1959), 151–168 | MR | Zbl

[7] B. Hartley, “A dual approach to Chernikov modules”, Math. Proc. Cambridge Philos. Soc., 82 (1977), 215–239 | DOI | MR | Zbl

[8] H. Heineken, L. A. Kurdachenko, “Groups with subnormality for all subgroups that are not finitely generated”, Ann. Mat. Pura Appl., 169 (1995), 203–232 | DOI | MR | Zbl

[9] B. Huppert, Endliche Gruppen, Springer, Berlin, 1967 | Zbl

[10] M. I. Kargapolov, “On a problem of O.Yu. Schmidt”, Siberian Math. J., 4 (1963), 232–235 | MR | Zbl

[11] L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, Artinian modules over group rings, Birkhauser, Basel, 2007 | MR | Zbl

[12] L. A. Kurdachenko, J. Otal, A. Russo, G. Vincenzi, “Groups whose all subgroups are ascendant or self-normalizing”, Cent. Eur. J. Math., 9 (2011), 420–432 | DOI | MR | Zbl

[13] L. A. Kurdachenko, H. Smith, “Groups with all subgroups either subnormal or self-normalizing”, J. Pure Appl. Algebra, 196 (2005), 271–278 | DOI | MR | Zbl

[14] J. C. Lennox, S. E. Stonehewer, Subnormal subgroups of groups, Clarendon Press, Oxford, 1987 | MR | Zbl

[15] J. Otal, N. N. Semko, N. N. Semko (Jr.), “On groups whose transitively normal subgroups are either normal or self-normalizing”, Ann. Mat. Pura Appl., 192 (2013), 901–915 | DOI | MR | Zbl

[16] B. I. Plotkin, “To the theory of locally nilpotent groups”, Dokl. Akad. Nauk USSR, 76 (1951), 639–641 | MR | Zbl

[17] A. A. Pypka, N. N. Semko (Jr.), “On infinite groups having only two types of pronormal subgroup”, Reports of the National Academy of Sciences of Ukraine, 2 (2012), 32–34 | Zbl

[18] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[19] P. Shumyatsky, “Locally finite groups with an automorphism whose centralizer is small”, Topics in infinite groups, Quaderni di Matematica, 8, 2002, 278–296 | MR

[20] S. E. Stonehewer, “Abnormal subgroups of a class of periodic locally soluble groups”, Proc. London Math. Soc., 14 (1964), 520–536 | DOI | MR

[21] D. I. Zaitsev, “On soluble subgroups of locally soluble groups”, Dokl. Akad. Nauk SSSR, 214 (1974), 1250–1253 | MR