Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_21_1_a7, author = {Leonid A. Kurdachenko and Aleksandr A. Pypka and Nikolaj N. Semko}, title = {The groups whose cyclic subgroups are either ascendant or almost self-normalizing}, journal = {Algebra and discrete mathematics}, pages = {111--127}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/} }
TY - JOUR AU - Leonid A. Kurdachenko AU - Aleksandr A. Pypka AU - Nikolaj N. Semko TI - The groups whose cyclic subgroups are either ascendant or almost self-normalizing JO - Algebra and discrete mathematics PY - 2016 SP - 111 EP - 127 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/ LA - en ID - ADM_2016_21_1_a7 ER -
%0 Journal Article %A Leonid A. Kurdachenko %A Aleksandr A. Pypka %A Nikolaj N. Semko %T The groups whose cyclic subgroups are either ascendant or almost self-normalizing %J Algebra and discrete mathematics %D 2016 %P 111-127 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/ %G en %F ADM_2016_21_1_a7
Leonid A. Kurdachenko; Aleksandr A. Pypka; Nikolaj N. Semko. The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/
[1] A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal, T. Pedraza, “Infinite groups with many permutable subgroups”, Rev. Mat. Iberoamericana, 24 (2008), 745–764 | DOI | MR | Zbl
[2] S. N. Chernikov, “On special $p$-groups”, Mat. Sb., 27 (1950), 185–200 | MR | Zbl
[3] M. R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, World Scientific, Singapore, 1994 | MR | Zbl
[4] L. Fuchs, Infinite abelian groups, v. I., Academic Press, New York, 1970 | MR | Zbl
[5] L. Fuchs, Infinite abelian groups, v. II, Academic Press, New York, 1973 | MR | Zbl
[6] K. W. Gruenberg, “The Engel elements of a soluble group”, Illinois J. Math., 3 (1959), 151–168 | MR | Zbl
[7] B. Hartley, “A dual approach to Chernikov modules”, Math. Proc. Cambridge Philos. Soc., 82 (1977), 215–239 | DOI | MR | Zbl
[8] H. Heineken, L. A. Kurdachenko, “Groups with subnormality for all subgroups that are not finitely generated”, Ann. Mat. Pura Appl., 169 (1995), 203–232 | DOI | MR | Zbl
[9] B. Huppert, Endliche Gruppen, Springer, Berlin, 1967 | Zbl
[10] M. I. Kargapolov, “On a problem of O.Yu. Schmidt”, Siberian Math. J., 4 (1963), 232–235 | MR | Zbl
[11] L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, Artinian modules over group rings, Birkhauser, Basel, 2007 | MR | Zbl
[12] L. A. Kurdachenko, J. Otal, A. Russo, G. Vincenzi, “Groups whose all subgroups are ascendant or self-normalizing”, Cent. Eur. J. Math., 9 (2011), 420–432 | DOI | MR | Zbl
[13] L. A. Kurdachenko, H. Smith, “Groups with all subgroups either subnormal or self-normalizing”, J. Pure Appl. Algebra, 196 (2005), 271–278 | DOI | MR | Zbl
[14] J. C. Lennox, S. E. Stonehewer, Subnormal subgroups of groups, Clarendon Press, Oxford, 1987 | MR | Zbl
[15] J. Otal, N. N. Semko, N. N. Semko (Jr.), “On groups whose transitively normal subgroups are either normal or self-normalizing”, Ann. Mat. Pura Appl., 192 (2013), 901–915 | DOI | MR | Zbl
[16] B. I. Plotkin, “To the theory of locally nilpotent groups”, Dokl. Akad. Nauk USSR, 76 (1951), 639–641 | MR | Zbl
[17] A. A. Pypka, N. N. Semko (Jr.), “On infinite groups having only two types of pronormal subgroup”, Reports of the National Academy of Sciences of Ukraine, 2 (2012), 32–34 | Zbl
[18] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[19] P. Shumyatsky, “Locally finite groups with an automorphism whose centralizer is small”, Topics in infinite groups, Quaderni di Matematica, 8, 2002, 278–296 | MR
[20] S. E. Stonehewer, “Abnormal subgroups of a class of periodic locally soluble groups”, Proc. London Math. Soc., 14 (1964), 520–536 | DOI | MR
[21] D. I. Zaitsev, “On soluble subgroups of locally soluble groups”, Dokl. Akad. Nauk SSSR, 214 (1974), 1250–1253 | MR