The groups whose cyclic subgroups are either ascendant or almost self-normalizing
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
Keywords:
locally finite group, self-normalizing subgroup, ascendant subgroup, subnormal subgroup, Gruenberg radical, Baer radical.
@article{ADM_2016_21_1_a7,
author = {Leonid A. Kurdachenko and Aleksandr A. Pypka and Nikolaj N. Semko},
title = {The groups whose cyclic subgroups are either ascendant or almost self-normalizing},
journal = {Algebra and discrete mathematics},
pages = {111--127},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/}
}
TY - JOUR AU - Leonid A. Kurdachenko AU - Aleksandr A. Pypka AU - Nikolaj N. Semko TI - The groups whose cyclic subgroups are either ascendant or almost self-normalizing JO - Algebra and discrete mathematics PY - 2016 SP - 111 EP - 127 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/ LA - en ID - ADM_2016_21_1_a7 ER -
%0 Journal Article %A Leonid A. Kurdachenko %A Aleksandr A. Pypka %A Nikolaj N. Semko %T The groups whose cyclic subgroups are either ascendant or almost self-normalizing %J Algebra and discrete mathematics %D 2016 %P 111-127 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/ %G en %F ADM_2016_21_1_a7
Leonid A. Kurdachenko; Aleksandr A. Pypka; Nikolaj N. Semko. The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/