Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_21_1_a7, author = {Leonid A. Kurdachenko and Aleksandr A. Pypka and Nikolaj N. Semko}, title = {The groups whose cyclic subgroups are either ascendant or almost self-normalizing}, journal = {Algebra and discrete mathematics}, pages = {111--127}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/} }
TY - JOUR AU - Leonid A. Kurdachenko AU - Aleksandr A. Pypka AU - Nikolaj N. Semko TI - The groups whose cyclic subgroups are either ascendant or almost self-normalizing JO - Algebra and discrete mathematics PY - 2016 SP - 111 EP - 127 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/ LA - en ID - ADM_2016_21_1_a7 ER -
%0 Journal Article %A Leonid A. Kurdachenko %A Aleksandr A. Pypka %A Nikolaj N. Semko %T The groups whose cyclic subgroups are either ascendant or almost self-normalizing %J Algebra and discrete mathematics %D 2016 %P 111-127 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/ %G en %F ADM_2016_21_1_a7
Leonid A. Kurdachenko; Aleksandr A. Pypka; Nikolaj N. Semko. The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/