The groups whose cyclic subgroups are either ascendant or almost self-normalizing
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
Keywords: locally finite group, self-normalizing subgroup, ascendant subgroup, subnormal subgroup, Gruenberg radical, Baer radical.
@article{ADM_2016_21_1_a7,
     author = {Leonid A. Kurdachenko and Aleksandr A. Pypka and Nikolaj N. Semko},
     title = {The groups whose cyclic subgroups are either ascendant or almost self-normalizing},
     journal = {Algebra and discrete mathematics},
     pages = {111--127},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/}
}
TY  - JOUR
AU  - Leonid A. Kurdachenko
AU  - Aleksandr A. Pypka
AU  - Nikolaj N. Semko
TI  - The groups whose cyclic subgroups are either ascendant or almost self-normalizing
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 111
EP  - 127
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/
LA  - en
ID  - ADM_2016_21_1_a7
ER  - 
%0 Journal Article
%A Leonid A. Kurdachenko
%A Aleksandr A. Pypka
%A Nikolaj N. Semko
%T The groups whose cyclic subgroups are either ascendant or almost self-normalizing
%J Algebra and discrete mathematics
%D 2016
%P 111-127
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/
%G en
%F ADM_2016_21_1_a7
Leonid A. Kurdachenko; Aleksandr A. Pypka; Nikolaj N. Semko. The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a7/