Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The binary Reed-Muller code ${\rm RM}(m-k,m)$ corresponds to the $k$-th power of the radical of $GF(2)[G],$ where $G$ is an elementary abelian group of order $2^m $ (see [2]). Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd $m$. The group algebra approach enables us to find a self-dual code for even $m=2k $ in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. In the group algebra $$GF(2)[G]\cong GF(2)[x_1,x_2,\dots, x_m]/(x_1^2-1,x_2^2-1, \dots x_m^2-1)$$ we construct self-dual binary $C=[2^{2k},2^{2k-1},2^k]$ codes with property $${\rm RM}(k-1,2k) \subset C \subset {\rm RM}(k,2k)$$ for an arbitrary integer $k$. In some cases these codes can be obtained as the direct product of two copies of ${\rm RM}(k-1,k)$-codes. For $k\geq 2$ the codes constructed are doubly even and for $k=2$ we get two non-isomorphic $[16,8,4]$-codes. If $k>2$ we have some self-dual codes with good parameters which have not been described yet.
Keywords: Reed–Muller code, Generalized Reed–Muller code, radical, self-dual code, group algebra, Jacobson radical.
@article{ADM_2016_21_1_a5,
     author = {Carolin Hannusch and Piroska Lakatos},
     title = {Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes},
     journal = {Algebra and discrete mathematics},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/}
}
TY  - JOUR
AU  - Carolin Hannusch
AU  - Piroska Lakatos
TI  - Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 59
EP  - 68
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/
LA  - en
ID  - ADM_2016_21_1_a5
ER  - 
%0 Journal Article
%A Carolin Hannusch
%A Piroska Lakatos
%T Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes
%J Algebra and discrete mathematics
%D 2016
%P 59-68
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/
%G en
%F ADM_2016_21_1_a5
Carolin Hannusch; Piroska Lakatos. Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/

[1] Assmus E. F. Key J. K., “Polynomial codes and finite geometries”, Handbook of Coding Theory, eds. V. Pless and W. C. Huffman, Elsevier, 1995

[2] Berman S. D., “On the theory of group code”, Kibernetika, 3:1 (1967), 31–39 | MR | Zbl

[3] Charpin P., “Codes cycliques étendus et idAiaux principaux d'une alge`bre modulaire”, C.R. Acad. Sci. Paris, 295:1 (1982), 313–315 | MR | Zbl

[4] Charpin P., Levy-Dit-Vehel F., “On Self-Dual Affine-lnvariant Codes”, Journal Combinatorial Theory, Series A, 67 (1994), 223–244 | DOI | MR | Zbl

[5] Drensky V., Lakatos P., “Monomial ideals, group algebras and error correcting codes”, Lecture Notes in Computer Science, 357 (1989), 181–188, Springer Verlag | DOI | MR

[6] Hannusch C., Lakatos P., “Construction of self-dual radical $2$-codes of given distance”, Discrete Math., Algorithms and Applications, 4:4 (2012), 1250052 | DOI | MR | Zbl

[7] Jennings S. A., “The structure of the group ring of a $p$-group over modular fields”, Trans. Amer. Math. Soc., 50 (1941), 175–185 | MR

[8] Joyner D., Kim J.-L., Selected unsolved problems in Coding Theory, Birkha̋user, 2011 | MR

[9] Kasami T., Lin, S., Peterson W. W., “New generalisations of the Reed-Muller codes”, IEEE Trans. Inform. Theory II, 14 (1968), 189–199 | DOI | MR | Zbl

[10] Kelarev A. V., Yearwood J. L., Vamplew P. W., “A polynomial ring construction for the classification of data”, Bull. Aust. Math. Soc., 79:2 (2009), 213–225 | DOI | MR | Zbl

[11] Landrock P., Manz O., “Classical codes as ideals in group algebras”, Designs, Codes and Cryptography, 2:3 (1992), 273–285 | DOI | MR | Zbl

[12] Muller D. E., “Application of boolean algebra to switching circuit design and to error detection”, IRE Transactions on Electronic Computers, 3 (1954), 6–12

[13] MacWilliams F. J., Sloane N. J. A., “The Theory of Error-Correcting Codes”, North Holland, Amsterdam, 1983

[14] Pless V., “A classification of self-orthogonal codes over $\mathrm{GF}(2)$”, Discrete Mathematics, 3 (1972), 209–246 | DOI | MR | Zbl

[15] MacWilliams F. J., Codes and Ideals in group algebras, Univ. of North Carolina Press, 1969 | MR | Zbl