Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_21_1_a5, author = {Carolin Hannusch and Piroska Lakatos}, title = {Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes}, journal = {Algebra and discrete mathematics}, pages = {59--68}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/} }
TY - JOUR AU - Carolin Hannusch AU - Piroska Lakatos TI - Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes JO - Algebra and discrete mathematics PY - 2016 SP - 59 EP - 68 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/ LA - en ID - ADM_2016_21_1_a5 ER -
Carolin Hannusch; Piroska Lakatos. Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/
[1] Assmus E. F. Key J. K., “Polynomial codes and finite geometries”, Handbook of Coding Theory, eds. V. Pless and W. C. Huffman, Elsevier, 1995
[2] Berman S. D., “On the theory of group code”, Kibernetika, 3:1 (1967), 31–39 | MR | Zbl
[3] Charpin P., “Codes cycliques étendus et idAiaux principaux d'une alge`bre modulaire”, C.R. Acad. Sci. Paris, 295:1 (1982), 313–315 | MR | Zbl
[4] Charpin P., Levy-Dit-Vehel F., “On Self-Dual Affine-lnvariant Codes”, Journal Combinatorial Theory, Series A, 67 (1994), 223–244 | DOI | MR | Zbl
[5] Drensky V., Lakatos P., “Monomial ideals, group algebras and error correcting codes”, Lecture Notes in Computer Science, 357 (1989), 181–188, Springer Verlag | DOI | MR
[6] Hannusch C., Lakatos P., “Construction of self-dual radical $2$-codes of given distance”, Discrete Math., Algorithms and Applications, 4:4 (2012), 1250052 | DOI | MR | Zbl
[7] Jennings S. A., “The structure of the group ring of a $p$-group over modular fields”, Trans. Amer. Math. Soc., 50 (1941), 175–185 | MR
[8] Joyner D., Kim J.-L., Selected unsolved problems in Coding Theory, Birkha̋user, 2011 | MR
[9] Kasami T., Lin, S., Peterson W. W., “New generalisations of the Reed-Muller codes”, IEEE Trans. Inform. Theory II, 14 (1968), 189–199 | DOI | MR | Zbl
[10] Kelarev A. V., Yearwood J. L., Vamplew P. W., “A polynomial ring construction for the classification of data”, Bull. Aust. Math. Soc., 79:2 (2009), 213–225 | DOI | MR | Zbl
[11] Landrock P., Manz O., “Classical codes as ideals in group algebras”, Designs, Codes and Cryptography, 2:3 (1992), 273–285 | DOI | MR | Zbl
[12] Muller D. E., “Application of boolean algebra to switching circuit design and to error detection”, IRE Transactions on Electronic Computers, 3 (1954), 6–12
[13] MacWilliams F. J., Sloane N. J. A., “The Theory of Error-Correcting Codes”, North Holland, Amsterdam, 1983
[14] Pless V., “A classification of self-orthogonal codes over $\mathrm{GF}(2)$”, Discrete Mathematics, 3 (1972), 209–246 | DOI | MR | Zbl
[15] MacWilliams F. J., Codes and Ideals in group algebras, Univ. of North Carolina Press, 1969 | MR | Zbl