Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 59-68
Voir la notice de l'article provenant de la source Math-Net.Ru
The binary Reed-Muller code ${\rm RM}(m-k,m)$ corresponds to the $k$-th power of the radical of $GF(2)[G],$ where $G$ is an elementary abelian group of order $2^m $ (see [2]). Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd $m$.
The group algebra approach enables us to find a self-dual code for even $m=2k $ in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.
In the group algebra
$$GF(2)[G]\cong GF(2)[x_1,x_2,\dots, x_m]/(x_1^2-1,x_2^2-1, \dots x_m^2-1)$$
we construct self-dual binary $C=[2^{2k},2^{2k-1},2^k]$ codes with property
$${\rm RM}(k-1,2k) \subset C \subset {\rm RM}(k,2k)$$ for an arbitrary integer $k$.
In some cases these codes can be obtained as the direct product of two copies of ${\rm RM}(k-1,k)$-codes. For $k\geq 2$ the codes constructed are doubly even and for $k=2$ we get two non-isomorphic $[16,8,4]$-codes. If $k>2$ we have some self-dual codes with good parameters which have not been described yet.
Keywords:
Reed–Muller code, Generalized Reed–Muller code, radical, self-dual code, group algebra, Jacobson radical.
@article{ADM_2016_21_1_a5,
author = {Carolin Hannusch and Piroska Lakatos},
title = {Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes},
journal = {Algebra and discrete mathematics},
pages = {59--68},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/}
}
TY - JOUR
AU - Carolin Hannusch
AU - Piroska Lakatos
TI - Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes
JO - Algebra and discrete mathematics
PY - 2016
SP - 59
EP - 68
VL - 21
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/
LA - en
ID - ADM_2016_21_1_a5
ER -
Carolin Hannusch; Piroska Lakatos. Construction of self-dual binary $[2^{2k},2^{2k-1},2^k]$-codes. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a5/