Normally $\zeta$-reversible profinite groups
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 24-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine (finitely generated) profinite groups in which two formal Dirichlet series, the normal subgroup zeta function and the normal probabilistic zeta function, coincide; we call these groups normally $\zeta$-reversible. We conjecture that these groups are pronilpotent and we prove this conjecture if $G$ is a normally $\zeta$-reversible satisfying one of the following properties: $G$ is prosoluble, $G$ is perfect, all the nonabelian composition factors of $G$ are alternating groups.
Keywords: profinite groups, Dirichlet series.
@article{ADM_2016_21_1_a3,
     author = {Leone Cimetta and Andrea Lucchini},
     title = {Normally $\zeta$-reversible profinite groups},
     journal = {Algebra and discrete mathematics},
     pages = {24--50},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a3/}
}
TY  - JOUR
AU  - Leone Cimetta
AU  - Andrea Lucchini
TI  - Normally $\zeta$-reversible profinite groups
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 24
EP  - 50
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a3/
LA  - en
ID  - ADM_2016_21_1_a3
ER  - 
%0 Journal Article
%A Leone Cimetta
%A Andrea Lucchini
%T Normally $\zeta$-reversible profinite groups
%J Algebra and discrete mathematics
%D 2016
%P 24-50
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a3/
%G en
%F ADM_2016_21_1_a3
Leone Cimetta; Andrea Lucchini. Normally $\zeta$-reversible profinite groups. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 24-50. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a3/

[1] N. Boston, “A probabilistic generalization of the Riemann zeta function”, Analytic number theory, Proceedings of a Conference In Honor of Heini Halberstam (Allerton Park, IL, 1995), v. 1, Progress in Mathematics, 138, 1996, 155–162 | Zbl

[2] F. Buekenhout, “Good contributors to the order of the finite simple groups”, Arch. Math. (Basel), 44:4 (1985), 289–296 | DOI | MR | Zbl

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985 | MR | Zbl

[4] E. Damian and A. Lucchini, “Profinite groups in which the probabilistic zeta function coincides with the subgroup zeta function”, J. Algebra, 402 (2014), 92–119 | DOI | MR | Zbl

[5] F. Grunewald, D. Segal and G. C. Smith, “Subgroups of finite index in nilpotent groups”, Invent. Math., 93:1 (1988), 185–223 | DOI | MR | Zbl

[6] E. Detomi and A. Lucchini, “Profinite groups with multiplicative probabilistic zeta function”, J. London Math. Soc. (2), 70:1 (2004), 165–181 | DOI | MR | Zbl

[7] E. Detomi and A. Lucchini, “Some generalizations of the probabilistic zeta function”, Ischia group theory—2006, World Sci. Publ., Hackensack, NJ, 2007, 56–72 | DOI | MR | Zbl

[8] D. Gorenstein, Finite simple groups. An introduction to their classification, University Series in Mathematics, Plenum Publishing Corp., New York, 1982 | MR | Zbl

[9] P. Hall, “The Eulerian functions of a group”, Quart. J. Math., 1936, no. 7, 134–151 | DOI

[10] I. M. Isaacs, Character theory of finite groups, Pure and Applied Mathematics, 69, Academic Press, New York–London, 1976 | MR | Zbl

[11] W. Kimmerle, R. Lyons, R. Sandling and D. N. Teague, “Composition factors from the group ring and Artin's theorem on orders of simple groups”, Proc. London Math. Soc. (3), 60:1 (1990), 89–122 | DOI | MR | Zbl

[12] V. Landazuri and G. M. Seitz, “On the minimal degrees of projective representations of the finite Chevalley groups”, J. Algebra, 32 (1974), 418–443 | DOI | MR | Zbl

[13] A. Lucchini, “Profinite groups with nonabelian crowns of bounded rank and their probabilistic zeta function”, Israel J. Math., 181 (2011), 53–64 | DOI | MR | Zbl

[14] J. Nagura, “On the interval containing at least one prime number”, Proc. Japan Acad., 28 (1952), 177–181 | DOI | MR | Zbl

[15] A. Mann, “Positively finitely generated groups”, Forum Math., 8:4 (1996), 429–459 | MR | Zbl

[16] C. E. Praeger and J. Saxl, “On the orders of primitive permutation groups”, Bull. London Math. Soc., 12:4 (1980), 303–307 | DOI | MR | Zbl

[17] G. Seitz and A. Zalesskii, “On the minimal degrees of projective representations of the finite Chevalley groups II”, J. Algebra, 158:1 (1993), 233–243 | DOI | MR | Zbl

[18] P. H. Tiep, “Low dimensional representations of finite quasisimple groups”, Groups, combinatorics and geometry (Durham, 2001), World Sci. Publ., River Edge, NJ, 2003, 277–294 | DOI | MR | Zbl

[19] A. Wagner, “The faithful linear representation of least degree of $S_n$ and $A_n$ over a field of characteristic 2”, Math. Z., 151:2 (1976), 127–137 | DOI | MR | Zbl

[20] T. R. Wolf, “Solvable and nilpotent subgroups of $GL(n,q^m)$”, Canad. J. Math., 34:5 (1982), 1097–1111 | DOI | MR | Zbl

[21] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR | Zbl