On classification of pairs of potent linear operators with the simplest annihilation condition
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 18-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of classifying the pairs of linear operators $\mathcal{A}, \mathcal{B}$ (acting on the same vector space), when the both operators are potent and $\mathcal{A}\mathcal{B}=0$. We describe the finite, tame and wild cases and classify the indecomposable pairs of operators in the first two of them.
Keywords:
potent operator, quiver, Krull-Schmidt category, functor, canonical form, wild type, extended Dynkin graph.
Mots-clés : tame type, Dynkin graph
Mots-clés : tame type, Dynkin graph
@article{ADM_2016_21_1_a2,
author = {Vitaliy M. Bondarenko and Olena M. Tertychna and Olesya V. Zubaruk},
title = {On classification of pairs of potent linear operators with the simplest annihilation condition},
journal = {Algebra and discrete mathematics},
pages = {18--23},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/}
}
TY - JOUR AU - Vitaliy M. Bondarenko AU - Olena M. Tertychna AU - Olesya V. Zubaruk TI - On classification of pairs of potent linear operators with the simplest annihilation condition JO - Algebra and discrete mathematics PY - 2016 SP - 18 EP - 23 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/ LA - en ID - ADM_2016_21_1_a2 ER -
%0 Journal Article %A Vitaliy M. Bondarenko %A Olena M. Tertychna %A Olesya V. Zubaruk %T On classification of pairs of potent linear operators with the simplest annihilation condition %J Algebra and discrete mathematics %D 2016 %P 18-23 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/ %G en %F ADM_2016_21_1_a2
Vitaliy M. Bondarenko; Olena M. Tertychna; Olesya V. Zubaruk. On classification of pairs of potent linear operators with the simplest annihilation condition. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 18-23. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/