On classification of pairs of potent linear operators with the simplest annihilation condition
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 18-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of classifying the pairs of linear operators $\mathcal{A}, \mathcal{B}$ (acting on the same vector space), when the both operators are potent and $\mathcal{A}\mathcal{B}=0$. We describe the finite, tame and wild cases and classify the indecomposable pairs of operators in the first two of them.
Keywords: potent operator, quiver, Krull-Schmidt category, functor, canonical form, wild type, extended Dynkin graph.
Mots-clés : tame type, Dynkin graph
@article{ADM_2016_21_1_a2,
     author = {Vitaliy M. Bondarenko and Olena M. Tertychna and Olesya V. Zubaruk},
     title = {On classification of pairs of potent linear operators with the simplest annihilation condition},
     journal = {Algebra and discrete mathematics},
     pages = {18--23},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/}
}
TY  - JOUR
AU  - Vitaliy M. Bondarenko
AU  - Olena M. Tertychna
AU  - Olesya V. Zubaruk
TI  - On classification of pairs of potent linear operators with the simplest annihilation condition
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 18
EP  - 23
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/
LA  - en
ID  - ADM_2016_21_1_a2
ER  - 
%0 Journal Article
%A Vitaliy M. Bondarenko
%A Olena M. Tertychna
%A Olesya V. Zubaruk
%T On classification of pairs of potent linear operators with the simplest annihilation condition
%J Algebra and discrete mathematics
%D 2016
%P 18-23
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/
%G en
%F ADM_2016_21_1_a2
Vitaliy M. Bondarenko; Olena M. Tertychna; Olesya V. Zubaruk. On classification of pairs of potent linear operators with the simplest annihilation condition. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 18-23. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a2/

[1] Yu. A. Drozd, “Tame and wild matrix problems”, Lecture Notes in Math., 832, 1980, 242–258 | DOI | MR | Zbl

[2] V. M. Bondarenko, Linear operators on vector spaces graded by posets with involution: tame and wild cases, Proc. of Institute of Math. of NAS of Ukraine, 63, Mathematics and its Applications, Kiev, 2006, 168 pp. | MR | Zbl

[3] P. Gabriel, “Unzerlegbare Darstellungen”, Manuscripts Math., 6 (1972), 71–103 | DOI | MR | Zbl

[4] L. A. Nazarova, “Representations of quivers of infinite type”, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 752–791 (Russian) | MR | Zbl

[5] P. Donovan, M.-R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lecture Notes, 5, Carleton University, Ottawa, Ont., 1973, 83 pp. | MR | Zbl