Mots-clés : nilpotent Lie subalgebra, polynomial algebra.
@article{ADM_2016_21_1_a10,
author = {Kateryna Sysak},
title = {On nilpotent {Lie} algebras of derivations with large center},
journal = {Algebra and discrete mathematics},
pages = {153--162},
year = {2016},
volume = {21},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a10/}
}
Kateryna Sysak. On nilpotent Lie algebras of derivations with large center. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 153-162. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a10/
[1] Yu. A. Bahturin, Identical Relations in Lie Algebras, Nauka, Moscow, 1985 (Russian)
[2] V. V. Bavula, “Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras”, Izv. RAN. Ser. Mat., 77:6 (2013), 3–44 | DOI | MR | Zbl
[3] V. V. Bavula, “The groups of automorphisms of the Lie algebras of triangular polynomial derivations”, J. Pure Appl. Algebra, 218:5 (2014), 829–851 | DOI | MR | Zbl
[4] J. Draisma, “Transitive Lie algebras of vector fields: an overview”, Qual. Theory Dyn. Syst., 11:1 (2012), 39–60 | DOI | MR | Zbl
[5] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl
[6] S. Lie, Theorie der Transformationsgruppen, v. 3, Leipzig, 1893
[7] Ie. O. Makedonskyi and A. P. Petravchuk, “On nilpotent and solvable Lie algebras of derivations”, Journal of Algebra, 401 (2014), 245–257 | DOI | MR | Zbl
[8] Ie. O. Makedonskyi and A. P. Petravchuk, “On finite dimensional Lie algebras of planar vector fields with rational coefficients”, Methods Func. Analysis Topology, 19:4 (2013), 376–388 | MR | Zbl