Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_2_a8, author = {O. Romaniv and A. Sagan}, title = {Quasi-Euclidean duo rings with elementary reduction of matrices}, journal = {Algebra and discrete mathematics}, pages = {317--324}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a8/} }
O. Romaniv; A. Sagan. Quasi-Euclidean duo rings with elementary reduction of matrices. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 317-324. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a8/
[1] B. Bougaut, Anneaux Quasi-Euclidiens, These de docteur troisieme cycle, 1976, 68 pp. | MR
[2] H. Chen, “Rings with many idempotents”, Int. J. Math. Math. Sci., 22 (1999), 547–558 | DOI | MR | Zbl
[3] P. M. Cohn, “On the structure of the $GL_2$ of a ring”, Inst. Hautes Etudes Sci. Publ. Math., 30 (1966), 5–53 | DOI | MR
[4] P. M. Cohn, Free rings and their relations, Academic press, London, 1971, 422 pp. | MR | Zbl
[5] J. Dieudonne, La geometrie des groupes classiques, Ergeb. Math., 5, Springer-Verlag, Berlin, 1971, 129 pp. | MR | Zbl
[6] M. Henriksen, “Some remarks about elementary divisor rings”, Michigan Math. J., 3, (1955/56), 159–163 | MR | Zbl
[7] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl
[8] D. Khurana, G. Marks, A. K. Srivastava, “On unit-central rings”, Advances in Ring Theory, Trends in Mathematics, Springer; Birkhauser Basel, Switzerland, 2010, 205–212 | MR
[9] W. K. Nicholson, “Lifting idempotents and exchange rings”, Trans. Amer. Alath. Soc., 229 (1977), 269–278 | DOI | MR | Zbl
[10] A. A. Tuganbaev, “Elementary divisor rings and distributive rings”, Uspehi. Math. Nauk, 46:6 (1991), 219–220 | MR
[11] A. A. Tuganbaev, Semidistributive Modules and Rings, Kluwer Academic Publ., Netherland, 1998, 367 pp. | MR | Zbl
[12] L. N. Vaserstein, “Bass's first stable range condition”, J. of Pure and Appl. Alg., 34 (1984), 319–330 | DOI | MR | Zbl
[13] B. V. Zabavsky, “Rings with elementary reduction matrix”, Ring Theory Conf. (Miskolc, July 15–20), 1996, 14
[14] B. V. Zabavsky, O. M. Romaniv, “Rings with elementary reduction of matrices”, Ukr. Mat. J., 52:12 (2000), 1641–1649 | MR
[15] B. V. Zabavsky, “Reduction of matrices over Bezout rings of stable rank not higher than 2”, Ukr. Mat. J., 55:4 (2003), 665–670 | DOI | MR | Zbl