Quasi-Euclidean duo rings with elementary reduction of matrices
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 317-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions under which a class of quasi-Euclidean duo rings coincides with a class of rings with elementary reduction of matrices. We prove that a Bezout duo ring with stable range 1 is a ring with elementary reduction of matrices. It is proved that a semiexchange quasi-duo Bezout ring is a ring with elementary reduction of matrices iff it is a duo ring.
Keywords: Bezout ring, duo ring, stable range, semiexchange ring, ring with elementary reduction of matrices.
@article{ADM_2015_20_2_a8,
     author = {O. Romaniv and A. Sagan},
     title = {Quasi-Euclidean duo rings with elementary reduction of matrices},
     journal = {Algebra and discrete mathematics},
     pages = {317--324},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a8/}
}
TY  - JOUR
AU  - O. Romaniv
AU  - A. Sagan
TI  - Quasi-Euclidean duo rings with elementary reduction of matrices
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 317
EP  - 324
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a8/
LA  - en
ID  - ADM_2015_20_2_a8
ER  - 
%0 Journal Article
%A O. Romaniv
%A A. Sagan
%T Quasi-Euclidean duo rings with elementary reduction of matrices
%J Algebra and discrete mathematics
%D 2015
%P 317-324
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a8/
%G en
%F ADM_2015_20_2_a8
O. Romaniv; A. Sagan. Quasi-Euclidean duo rings with elementary reduction of matrices. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 317-324. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a8/

[1] B. Bougaut, Anneaux Quasi-Euclidiens, These de docteur troisieme cycle, 1976, 68 pp. | MR

[2] H. Chen, “Rings with many idempotents”, Int. J. Math. Math. Sci., 22 (1999), 547–558 | DOI | MR | Zbl

[3] P. M. Cohn, “On the structure of the $GL_2$ of a ring”, Inst. Hautes Etudes Sci. Publ. Math., 30 (1966), 5–53 | DOI | MR

[4] P. M. Cohn, Free rings and their relations, Academic press, London, 1971, 422 pp. | MR | Zbl

[5] J. Dieudonne, La geometrie des groupes classiques, Ergeb. Math., 5, Springer-Verlag, Berlin, 1971, 129 pp. | MR | Zbl

[6] M. Henriksen, “Some remarks about elementary divisor rings”, Michigan Math. J., 3, (1955/56), 159–163 | MR | Zbl

[7] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[8] D. Khurana, G. Marks, A. K. Srivastava, “On unit-central rings”, Advances in Ring Theory, Trends in Mathematics, Springer; Birkhauser Basel, Switzerland, 2010, 205–212 | MR

[9] W. K. Nicholson, “Lifting idempotents and exchange rings”, Trans. Amer. Alath. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[10] A. A. Tuganbaev, “Elementary divisor rings and distributive rings”, Uspehi. Math. Nauk, 46:6 (1991), 219–220 | MR

[11] A. A. Tuganbaev, Semidistributive Modules and Rings, Kluwer Academic Publ., Netherland, 1998, 367 pp. | MR | Zbl

[12] L. N. Vaserstein, “Bass's first stable range condition”, J. of Pure and Appl. Alg., 34 (1984), 319–330 | DOI | MR | Zbl

[13] B. V. Zabavsky, “Rings with elementary reduction matrix”, Ring Theory Conf. (Miskolc, July 15–20), 1996, 14

[14] B. V. Zabavsky, O. M. Romaniv, “Rings with elementary reduction of matrices”, Ukr. Mat. J., 52:12 (2000), 1641–1649 | MR

[15] B. V. Zabavsky, “Reduction of matrices over Bezout rings of stable rank not higher than 2”, Ukr. Mat. J., 55:4 (2003), 665–670 | DOI | MR | Zbl