Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_2_a5, author = {Ryo Kawaguchi}, title = {The lower bound for the volume of a three-dimensional convex polytope}, journal = {Algebra and discrete mathematics}, pages = {263--285}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/} }
Ryo Kawaguchi. The lower bound for the volume of a three-dimensional convex polytope. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/
[1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves, v. I, Springer-Verlag, New York, 1985 | MR | Zbl
[2] V. V. Batyrev, “Toric Fano threefolds”, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 704–717 | MR | Zbl
[3] M. Beck and S. Robins, Computing the continuous discretely: Integer-point enumeration in polyhedra, Springer-Verlag, New York, 2007 | MR | Zbl
[4] G. Castelnuovo, “Ricerche di geometria sulle curve algebriche”, Atti R. Accad. Sci. Torino, 24 (1889), 346–373
[5] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, 1990 | DOI | MR | Zbl
[6] Y. Fukuma, A note on quasi-polarized manifolds $(X,L)$ with $h^{0}(K_{X}+(n-2)L)=0$, preprint
[7] K. Kołodziejczyk, “A new formula for the volume of lattice polyhedra”, Monatsh. Math., 122 (1996), 367–375 | DOI | MR
[8] K. Kołodziejczyk, “On the volume of lattice manifolds”, Bull. Austral. Math. Soc., 61 (2000), 313–318 | DOI | MR
[9] K. Kołodziejczyk and J. Reay, “Polynomials and spatial Pick-type theorems”, Expo. Math., 26 (2008), 41–53 | DOI | MR
[10] I. G. Macdonald, “The volume of a lattice polyhedron”, Proc. Cambridge Philos. Soc., 59 (1963), 719–726 | DOI | MR | Zbl
[11] S. Mukai, “Biregular classification of Fano 3-folds and Fano manifolds of coindex 3”, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 3000–3002 | DOI | MR | Zbl
[12] T. Oda, Convex bodies and algebraic geometry, Springer-Verlag, Berlin, 1988 | MR | Zbl
[13] S. Ogata, “Projective normality of toric 3-folds with non-big adjoint hyperplane sections”, Tohoku Math. J., 64 (2012), 125–140 | DOI | MR | Zbl
[14] G. A. Pick, “Geometrisches zur Zahlenlehre”, Sitzungsberichte Lotos (Prag), 19 (1899), 311–319
[15] J. E. Reeve, “On the volume of lattice polyhedra”, Proc. London Math. Soc., 7 (1957), 378–395 | DOI | MR | Zbl
[16] J. E. Reeve, “A further note on the volume of lattice polyhedra”, J. London Math. Soc., 34 (1959), 57–62 | DOI | MR | Zbl
[17] K. Watanabe and M. Watanabe, “The classification of Fano 3-folds with torus embeddings”, Tokyo J. Math., 5 (1982), 37–48 | DOI | MR | Zbl