The lower bound for the volume of a three-dimensional convex polytope
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 263-285

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we provide a lower bound for the volume of a three-dimensional smooth integral convex polytope having interior lattice points. Since our formula has a quite simple form compared with preliminary results, we can easily utilize it for other beneficial purposes. As an immediate consequence of our lower bound, we obtain a characterization of toric Fano threefold. Besides, we compute the sectional genus of a three-dimensional polarized toric variety, and classify toric Castelnuovo varieties.
Keywords: lattice polytopes, polarized varieties, toric varieties
Mots-clés : sectional genus.
@article{ADM_2015_20_2_a5,
     author = {Ryo Kawaguchi},
     title = {The lower bound for the volume of a three-dimensional convex polytope},
     journal = {Algebra and discrete mathematics},
     pages = {263--285},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/}
}
TY  - JOUR
AU  - Ryo Kawaguchi
TI  - The lower bound for the volume of a three-dimensional convex polytope
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 263
EP  - 285
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/
LA  - en
ID  - ADM_2015_20_2_a5
ER  - 
%0 Journal Article
%A Ryo Kawaguchi
%T The lower bound for the volume of a three-dimensional convex polytope
%J Algebra and discrete mathematics
%D 2015
%P 263-285
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/
%G en
%F ADM_2015_20_2_a5
Ryo Kawaguchi. The lower bound for the volume of a three-dimensional convex polytope. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/