The lower bound for the volume of a three-dimensional convex polytope
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 263-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we provide a lower bound for the volume of a three-dimensional smooth integral convex polytope having interior lattice points. Since our formula has a quite simple form compared with preliminary results, we can easily utilize it for other beneficial purposes. As an immediate consequence of our lower bound, we obtain a characterization of toric Fano threefold. Besides, we compute the sectional genus of a three-dimensional polarized toric variety, and classify toric Castelnuovo varieties.
Keywords: lattice polytopes, polarized varieties, toric varieties
Mots-clés : sectional genus.
@article{ADM_2015_20_2_a5,
     author = {Ryo Kawaguchi},
     title = {The lower bound for the volume of a three-dimensional convex polytope},
     journal = {Algebra and discrete mathematics},
     pages = {263--285},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/}
}
TY  - JOUR
AU  - Ryo Kawaguchi
TI  - The lower bound for the volume of a three-dimensional convex polytope
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 263
EP  - 285
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/
LA  - en
ID  - ADM_2015_20_2_a5
ER  - 
%0 Journal Article
%A Ryo Kawaguchi
%T The lower bound for the volume of a three-dimensional convex polytope
%J Algebra and discrete mathematics
%D 2015
%P 263-285
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/
%G en
%F ADM_2015_20_2_a5
Ryo Kawaguchi. The lower bound for the volume of a three-dimensional convex polytope. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a5/

[1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves, v. I, Springer-Verlag, New York, 1985 | MR | Zbl

[2] V. V. Batyrev, “Toric Fano threefolds”, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 704–717 | MR | Zbl

[3] M. Beck and S. Robins, Computing the continuous discretely: Integer-point enumeration in polyhedra, Springer-Verlag, New York, 2007 | MR | Zbl

[4] G. Castelnuovo, “Ricerche di geometria sulle curve algebriche”, Atti R. Accad. Sci. Torino, 24 (1889), 346–373

[5] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, 1990 | DOI | MR | Zbl

[6] Y. Fukuma, A note on quasi-polarized manifolds $(X,L)$ with $h^{0}(K_{X}+(n-2)L)=0$, preprint

[7] K. Kołodziejczyk, “A new formula for the volume of lattice polyhedra”, Monatsh. Math., 122 (1996), 367–375 | DOI | MR

[8] K. Kołodziejczyk, “On the volume of lattice manifolds”, Bull. Austral. Math. Soc., 61 (2000), 313–318 | DOI | MR

[9] K. Kołodziejczyk and J. Reay, “Polynomials and spatial Pick-type theorems”, Expo. Math., 26 (2008), 41–53 | DOI | MR

[10] I. G. Macdonald, “The volume of a lattice polyhedron”, Proc. Cambridge Philos. Soc., 59 (1963), 719–726 | DOI | MR | Zbl

[11] S. Mukai, “Biregular classification of Fano 3-folds and Fano manifolds of coindex 3”, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 3000–3002 | DOI | MR | Zbl

[12] T. Oda, Convex bodies and algebraic geometry, Springer-Verlag, Berlin, 1988 | MR | Zbl

[13] S. Ogata, “Projective normality of toric 3-folds with non-big adjoint hyperplane sections”, Tohoku Math. J., 64 (2012), 125–140 | DOI | MR | Zbl

[14] G. A. Pick, “Geometrisches zur Zahlenlehre”, Sitzungsberichte Lotos (Prag), 19 (1899), 311–319

[15] J. E. Reeve, “On the volume of lattice polyhedra”, Proc. London Math. Soc., 7 (1957), 378–395 | DOI | MR | Zbl

[16] J. E. Reeve, “A further note on the volume of lattice polyhedra”, J. London Math. Soc., 34 (1959), 57–62 | DOI | MR | Zbl

[17] K. Watanabe and M. Watanabe, “The classification of Fano 3-folds with torus embeddings”, Tokyo J. Math., 5 (1982), 37–48 | DOI | MR | Zbl