A group-theoretic approach to covering systems
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 250-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we show how group actions can be used to examine the set of all covering systems of the integers with a fixed set of distinct moduli.
Keywords: covering system, congruence.
Mots-clés : group action
@article{ADM_2015_20_2_a4,
     author = {Lenny Jones and Daniel White},
     title = {A group-theoretic approach to covering systems},
     journal = {Algebra and discrete mathematics},
     pages = {250--262},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a4/}
}
TY  - JOUR
AU  - Lenny Jones
AU  - Daniel White
TI  - A group-theoretic approach to covering systems
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 250
EP  - 262
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a4/
LA  - en
ID  - ADM_2015_20_2_a4
ER  - 
%0 Journal Article
%A Lenny Jones
%A Daniel White
%T A group-theoretic approach to covering systems
%J Algebra and discrete mathematics
%D 2015
%P 250-262
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a4/
%G en
%F ADM_2015_20_2_a4
Lenny Jones; Daniel White. A group-theoretic approach to covering systems. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 250-262. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a4/

[1] B. Banks, C. Finch, F. Luca, C. Pomerance and P. Stănică, “Sierpiński and Carmichael Numbers”, Trans. Amer. Math. Soc. (to appear)

[2] Y. G. Chen, “On integers of the form $2^n\pm p_1^{\alpha_1}\cdots p_r^{\alpha_r}$”, Proc. Amer. Math. Soc., 128 (2000), 1613–1616 | DOI | MR | Zbl

[3] Y. G. Chen, “On integers of the form $k2^n+1$”, Proc. Amer. Math. Soc., 129 (2001), 355–361 | DOI | MR | Zbl

[4] Y. G. Chen, “On integers of the forms $k-2\sp n$ and $k2\sp n+1$”, J. Number Theory, 89 (2001), 121–125 | DOI | MR | Zbl

[5] Y. G. Chen, “On integers of the forms $k\sp r-2\sp n$ and $k\sp r2\sp n+1$”, J. Number Theory, 98 (2003), 310–319 | DOI | MR | Zbl

[6] Y. G. Chen, “On integers of the forms $k\pm 2^n$ and $k2^n\pm 1$”, J. Number Theory, 125 (2007), 14–25 | DOI | MR | Zbl

[7] F. Cohen and J. L. Selfridge, “Not every number is the sum or difference of two prime powers”, Math. Comput., 29 (1975), 79–81 | DOI | MR | Zbl

[8] P. Erdős, “On integers of the form $2\sp k+p$ and some related problems”, Summa Brasil. Math., 1950, 113–123 | MR | Zbl

[9] M. Filaseta, “Coverings of the integers associated with an irreducibility theorem of A. Schinzel”, Number theory for the millennium, v. II, 2002, 1–24 | MR | Zbl

[10] M. Filaseta, C. Finch and M. Kozek, “On powers associated with Sierpiński numbers, Riesel numbers and Polignac's conjecture”, J. Number Theory, 128 (2008), 1916–1940 | DOI | MR | Zbl

[11] M. Filaseta, K. Ford and S. Konyagin, “On an irreducibility theorem of A. Schinzel associated with coverings of the integers”, Illinois J. Math., 44 (2000), 633–643 | MR | Zbl

[12] M. Filaseta, K. Ford, S. Konyagin, C. Pomerance and G. Yu, “Sieving by large integers and covering systems of congruences”, J. Amer. Math. Soc., 20:2 (2007), 495–517 | DOI | MR | Zbl

[13] M. Filaseta and J. Harrington, “A polynomial investigation inspired by work of Schinzel and Sierpiński”, Acta Arith., 155:2 (2012), 149–161 | DOI | MR | Zbl

[14] M. Filaseta, M. Kozek, C. Nicol and John Selfridge, “Composites that remain composite after changing a digit”, J. Comb. Number Theory, 2:1 (2010), 25–36 | MR | Zbl

[15] C. Finch, J. Harrington and L. Jones, “Nonlinear Sierpiński and Riesel numbers”, J. Number Theory, 133:2 (2013), 534–544 | DOI | MR | Zbl

[16] C. Finch and L. Jones, Perfect Power Riesel Numbers, submitted | MR

[17] P.-H. Fuss, Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIII Ème Siècle, v. I, II, Johnson Reprint, New York, 1968 | MR

[18] J. Grantham, W. Jarnicki, J. Rickert and S. Wagon, “Repeatedly appending any digit to generate composite numbers”, Amer. Math. Monthly (to appear) | MR

[19] Song Guo and Zhi-Wei Sun, “On odd covering systems with distinct moduli”, Adv. in Appl. Math., 35:2 (2005), 182–187 | DOI | MR | Zbl

[20] B. Hough, “Solution of the minimum modulus problem for covering systems”, Ann. of Math. (2), 181:1 (2015), 361–382 | DOI | MR | Zbl

[21] A. S. Izotov, “A note on Sierpiński numbers”, Fibonacci Quart., 33 (1995), 206–207 | MR | Zbl

[22] Scott Jenkin and Jamie Simpson, “Composite covering systems of minimum cardinality”, Integers, 3 (2003), A13, 11 pp. | MR | Zbl

[23] L. Jones, “Fibonacci variations of a conjecture of Polignac”, Integers, 12:4 (2012), 659–667 | DOI | MR | Zbl

[24] L. Jones, “Polynomial variations on a theme of Sierpiński”, Int. J. Number Theory, 5 (2009), 1–17 | DOI | MR

[25] L. Jones, “Using Lucas sequences to generalize a theorem of Sierpiński”, Acta Arith., 152:3 (2012), 307–322 | DOI | MR | Zbl

[26] L. Jones, “Variations on a theme of Sierpiński”, J. Integer Seq., 10 (2007), Article 07.4.4, 15 pp., (electronic) | MR | Zbl

[27] L. Jones, “When does appending the same digit repeatedly on the right of a positive integer generate a sequence of composite integers?”, Amer. Math. Monthly, 118 (2011), 153–160 | DOI | MR | Zbl

[28] L. Jones and A. Lamarche, Generating $d$-composite sandwich numbers, submitted | MR

[29] L. Jones and M. Markovich, “Generating composite sequences by appending digits to special types of integers”, The Fibonacci Quarterly (to appear)

[30] L. Jones and D. White, “Appending digits to generate an infinite sequence of composite numbers”, J. Integer Seq., 14:5 (2011), Article 11.5.7, 12 pp. | MR | Zbl

[31] L. Jones and D. White, On primitive covering numbers, arXiv: http://arxiv.org/abs/1406.6851

[32] L. Jones and D. White, “Sierpinski numbers in imaginary quadratic fields”, Integers, 12:6 (2012), 1265–1278 | DOI | MR | Zbl

[33] C. E. Krukenberg, Covering sets of the integers, Ph.D. thesis, University of Illinois, Urbana-Champaign, 1971 | MR

[34] P. Nielsen, “A covering system whose smallest modulus is 40”, J. Number Theory, 129:3 (2009), 640–666 | DOI | MR | Zbl

[35] Hao Pan and Zhi-Wei Sun, “A sharp result on $m$-covers”, Proc. Amer. Math. Soc., 135:11 (2007), 3515–3520, (electronic) | DOI | MR | Zbl

[36] A. de Polignac, “Recherches nouvelles sur les nombres premiers”, C. R. Acad. Sci. Paris Math., 29 (1849), 397–401; 738–739

[37] Š. Porubský, “Covering systems, Kubert identities and difference equations”, Math. Slovaca, 50:4 (2000), 381–413 | MR | Zbl

[38] Š. Porubský and J. Schönheim, “Covering systems of Paul Erdős. Past, present and future”, Paul Erdős and his mathematics, I (Budapest 1999), Bolyai Soc. Math. Stud., 11, Jnos Bolyai Math. Soc., Budapest, 2002, 581–627 | MR

[39] Š. Porubský and J. Schönheim, “New necessary and sufficient conditions on $(a_i,m_i)$ in order that $x\equiv a_i\pmod{m_i}$ be a covering system”, The Ninth Quadrennial International Conference on Graph Theory, Combinatorics, Algorithms and Applications, Electron. Notes Discrete Math., 11, Elsevier, Amsterdam, 2002, 5 pp., (electronic) | MR | Zbl

[40] Š. Porubský and J. Schönheim, “Old and new necessary and sufficient conditions on $(a_i,m_i)$ in order that $n\equiv a_i \pmod{m_i}$ be a covering system”, Math. Slovaca, 53:4 (2003), 341–349 | MR | Zbl

[41] H. Riesel, “Några stora primtal”, Elementa, 39 (1956), 258–260

[42] N. P. Romanoff, “Uber einige Stze der additiven Zahlentheorie”, Math. Ann. (German), 109:1 (1934), 668–678 | DOI | MR

[43] W. Sierpiński, “Sur un problème concernant les nombres $k.2^n+1$”, Elem. d. Math., 15 (1960), 73–74 | MR | Zbl

[44] Xue Gong Sun, “On the density of integers of the form $2k+p$ in arithmetic progressions”, Acta Math. Sin. (Engl. Ser.), 26:1 (2010), 155–160 | DOI | MR | Zbl

[45] Xue-Gong Sun and Jin-Hui Fang, “On the density of integers of the form $(p-1)2^{-n}$ in arithmetic progressions”, Bull. Aust. Math. Soc., 78:3 (2008), 431–436 | DOI | MR

[46] Zhi-Wei Sun, “A connection between covers of the integers and unit fractions”, Adv. in Appl. Math., 38:2 (2007), 267–274 | DOI | MR | Zbl

[47] Zhi-Wei Sun, “On covering numbers”, Combinatorial number theory, de Gruyter, Berlin, 2007, 443–453 | MR | Zbl

[48] Zhi-Wei Sun, “On $m$-covers and $m$-systems”, Bull. Aust. Math. Soc., 81:2 (2010), 223–235 | DOI | MR | Zbl

[49] Zhi-Wei Sun and Siman Yang, “Covers with less than 10 moduli and their applications”, J. Southeast Univ. (English Ed.), 14:2 (1998), 106–114 | MR