On solvable $Z_3$-graded alternative algebras
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 203-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A=A_0\oplus A_1\oplus A_2$ be an alternative $Z_3$-graded algebra. The main result of the paper is the following: if $A_0$ is solvable and the characteristic of the ground field not equal 2,3 and 5, then $A$ is solvable.
Keywords: alternative algebra, $Z_3$-graded algebra, subalgebra of fixed points.
Mots-clés : solvable algebra
@article{ADM_2015_20_2_a2,
     author = {Maxim Goncharov},
     title = {On solvable $Z_3$-graded alternative algebras},
     journal = {Algebra and discrete mathematics},
     pages = {203--216},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/}
}
TY  - JOUR
AU  - Maxim Goncharov
TI  - On solvable $Z_3$-graded alternative algebras
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 203
EP  - 216
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/
LA  - en
ID  - ADM_2015_20_2_a2
ER  - 
%0 Journal Article
%A Maxim Goncharov
%T On solvable $Z_3$-graded alternative algebras
%J Algebra and discrete mathematics
%D 2015
%P 203-216
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/
%G en
%F ADM_2015_20_2_a2
Maxim Goncharov. On solvable $Z_3$-graded alternative algebras. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 203-216. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/

[1] G. Higman, “Groups and rings which have automorphisms without non-trivial fixed elements”, J. London Math. Soc., 32:2 (1957), 321–334 | DOI | MR | Zbl

[2] V. A. Kreknin, Kostrikin A. I., “Lie algebras with a regular automorphism”, Sov. Math. Dokl., 4 (1963), 355–358 | Zbl

[3] V. A. Kreknin, “Solvability of a Lie algebra containing a regular automorphism”, Sib. Math. J., 8 (1967), 536–537 | MR

[4] N.Yu. Makarenko, “A nilpotent ideal in the Lie rings with automorphism of prime order”, Sib. Mat. Zh., 46:6 (2005), 1360–1373 | DOI | MR | Zbl

[5] G. M. Bergman, I. M. Isaacs, “Rings with fixed-point-free group actions”, Proc. London Math. Soc., 27 (1973), 69–87 | DOI | MR | Zbl

[6] V. K. Kharchenko, “Galois extensions and quotient rings”, Algebra and Logic, 13:4 (1974), 265–281 | DOI | MR

[7] A. P. Semenov, “Subrings of invariants of a finite group of automorphisms of a Jordan ring”, Sib. Math. J., 32:1 (1991), 169–172 | DOI | MR | Zbl

[8] W. S. Martindale, S. Montgomery, “Fixed elements of Jordan automorphisms of associative rings”, Pacific J. Math, 72:1 (1977), 181–196 | DOI | MR | Zbl

[9] M. Nagata, “On the nilpotancy of nil-algebras”, J. Math. Soc. Japan, 4 (1952), 296–301 | DOI | MR | Zbl

[10] G. Higman, “On a conjecture of Nagata”, Proc. Camb. Phil. Soc., 52 (1956), 1–4 | DOI | MR | Zbl

[11] V. N. Zhelyabin, “Jordan superalgebras with a solvable even part”, Algebra and Logic, 34:1 (1995), 25–34 | DOI | MR | Zbl

[12] O. N. Smirnov, “Solvability of alternative $Z_2$-graded algebras and alternative superalgebras”, Sib. Math. J., 32:6 (1991), 1030–1034 | DOI | MR | Zbl

[13] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Rings that are Nearly Associative, translated from the Russian by Harry F. Smith, Academic Press, New York, 1982 | MR | Zbl

[14] K. A. Zhevlakov, “Solvability of alternative nil-rings”, Sib. Math. J., 3 (1962), 368–377 (Russian) | MR | Zbl

[15] G. V. Dorofeev, “An instance of a solvable, though nonnilpotent, alternative ring”, Uspehi Mat. Nauk, 15:3 (1960), 147–150 (Russian) | MR | Zbl