On solvable $Z_3$-graded alternative algebras
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 203-216

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A=A_0\oplus A_1\oplus A_2$ be an alternative $Z_3$-graded algebra. The main result of the paper is the following: if $A_0$ is solvable and the characteristic of the ground field not equal 2,3 and 5, then $A$ is solvable.
Keywords: alternative algebra, $Z_3$-graded algebra, subalgebra of fixed points.
Mots-clés : solvable algebra
@article{ADM_2015_20_2_a2,
     author = {Maxim Goncharov},
     title = {On solvable $Z_3$-graded alternative algebras},
     journal = {Algebra and discrete mathematics},
     pages = {203--216},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/}
}
TY  - JOUR
AU  - Maxim Goncharov
TI  - On solvable $Z_3$-graded alternative algebras
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 203
EP  - 216
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/
LA  - en
ID  - ADM_2015_20_2_a2
ER  - 
%0 Journal Article
%A Maxim Goncharov
%T On solvable $Z_3$-graded alternative algebras
%J Algebra and discrete mathematics
%D 2015
%P 203-216
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/
%G en
%F ADM_2015_20_2_a2
Maxim Goncharov. On solvable $Z_3$-graded alternative algebras. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 203-216. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a2/