On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 182-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any non-negative integers $m$ and $n$ we define the class of strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective groups which properly encompasses the classes of strongly $m$-$\omega_1$-$p^{\omega+n}$-projective groups and strongly almost $\omega_1$-$p^{\omega+n}$-projective groups, defined by the author in Demonstr. Math. (2014) and Hacettepe J. Math. Stat. (2015), respectively. Certain results about this new group class are proved as well as it is shown that it shares many analogous basic properties as those of the aforementioned two group classes.
Keywords: almost $p^{\omega+n}$-projective groups, almost $\omega_1$-$p^{\omega+n}$-projective groups, strongly almost $\omega_1$-$p^{\omega+n}$-projective groups, countable subgroups, nice subgroups, Ulm subgroups, Ulm factors.
@article{ADM_2015_20_2_a1,
     author = {P. Danchev},
     title = {On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {182--202},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a1/}
}
TY  - JOUR
AU  - P. Danchev
TI  - On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 182
EP  - 202
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a1/
LA  - en
ID  - ADM_2015_20_2_a1
ER  - 
%0 Journal Article
%A P. Danchev
%T On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups
%J Algebra and discrete mathematics
%D 2015
%P 182-202
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a1/
%G en
%F ADM_2015_20_2_a1
P. Danchev. On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 182-202. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a1/

[1] P. Danchev, “On almost $n$-simply presented abelian $p$-groups”, Korean J. Math., 21:4 (2013), 401–419 | DOI | MR

[2] P. Danchev, “On almost $\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups”, Korean J. Math., 22:3 (2014), 501–516 | DOI | MR

[3] P. Danchev, “On $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups”, Demonstr. Math., 47:4 (2014), 805–825 | MR | Zbl

[4] P. Danchev, “On almost $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups”, Georgian Math. J., 22:1 (2015), 27–35 | DOI | MR | Zbl

[5] P. Danchev, “On almost $\alpha$-simply presented abelian $p$-groups”, Kochi J. Math., 10:1 (2015), 19–31 | MR | Zbl

[6] P. Danchev, “On almost $\omega_1$-$n$-simply presented abelian $p$-groups”, Publ. Inst. Math. Beograd, 97:1 (2015), 103–115 | DOI | MR

[7] P. Danchev, “On strongly and nicely almost $\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups”, Hacettepe J. Math. Stat., 44:5 (2015) | MR

[8] P. Danchev, “Primary abelian almost $n$-$\Sigma$-groups”, Ric. Mat., 64:1 (2015), 1–7 | DOI | MR | Zbl

[9] L. Fuchs, Infinite Abelian Groups, v. I, Academic Press, New York–London, 1970 ; v. II, 1973 | MR | Zbl

[10] P. Griffith, Infinite Abelian Group Theory, University of Chicago Press, Chicago–London, 1970 | MR | Zbl

[11] P. Hill, “Almost coproducts of finite cyclic groups”, Commentat. Math. Univ. Carolin., 36 (1995), 795–804 | MR | Zbl

[12] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 ; 1969 | MR | Zbl