On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 171-181

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the semigroup $\mathcal{B}(S)$ of all bi-ideal elements of an $le$-semigroup $S$ is a band if and only if $S$ is both regular and intra-regular. Here we show that $\mathcal{B}(S)$ is a band if and only if it is a normal band and give a complete characterization of the $le$-semigroups $S$ for which the associated semigroup $\mathcal{B}(S)$ is in each of the seven nontrivial subvarieties of normal bands. We also show that the set $\mathcal{B}_{m}(S)$ of all minimal bi-ideal elements of $S$ forms a rectangular band and that $\mathcal{B}_{m}(S)$ is a bi-ideal of the semigroup $\mathcal{B(S)}$.
Keywords: bi-ideal elements, duo; intra-regular, lattice-ordered semigroup, locally testable, normal band, regular.
@article{ADM_2015_20_2_a0,
     author = {A. K. Bhuniya and M. Kumbhakar},
     title = {On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band},
     journal = {Algebra and discrete mathematics},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/}
}
TY  - JOUR
AU  - A. K. Bhuniya
AU  - M. Kumbhakar
TI  - On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 171
EP  - 181
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/
LA  - en
ID  - ADM_2015_20_2_a0
ER  - 
%0 Journal Article
%A A. K. Bhuniya
%A M. Kumbhakar
%T On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band
%J Algebra and discrete mathematics
%D 2015
%P 171-181
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/
%G en
%F ADM_2015_20_2_a0
A. K. Bhuniya; M. Kumbhakar. On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/