On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band
Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 171-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the semigroup $\mathcal{B}(S)$ of all bi-ideal elements of an $le$-semigroup $S$ is a band if and only if $S$ is both regular and intra-regular. Here we show that $\mathcal{B}(S)$ is a band if and only if it is a normal band and give a complete characterization of the $le$-semigroups $S$ for which the associated semigroup $\mathcal{B}(S)$ is in each of the seven nontrivial subvarieties of normal bands. We also show that the set $\mathcal{B}_{m}(S)$ of all minimal bi-ideal elements of $S$ forms a rectangular band and that $\mathcal{B}_{m}(S)$ is a bi-ideal of the semigroup $\mathcal{B(S)}$.
Keywords: bi-ideal elements, duo; intra-regular, lattice-ordered semigroup, locally testable, normal band, regular.
@article{ADM_2015_20_2_a0,
     author = {A. K. Bhuniya and M. Kumbhakar},
     title = {On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band},
     journal = {Algebra and discrete mathematics},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/}
}
TY  - JOUR
AU  - A. K. Bhuniya
AU  - M. Kumbhakar
TI  - On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 171
EP  - 181
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/
LA  - en
ID  - ADM_2015_20_2_a0
ER  - 
%0 Journal Article
%A A. K. Bhuniya
%A M. Kumbhakar
%T On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band
%J Algebra and discrete mathematics
%D 2015
%P 171-181
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/
%G en
%F ADM_2015_20_2_a0
A. K. Bhuniya; M. Kumbhakar. On the $le$-semigroups whose semigroup of~bi-ideal elements is a normal band. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a0/

[1] D. D. Anderson and E. W. Johnson, “Abstract ideal theory from Krull to the present”, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), Lecture Notes in Pure and Appl. Math., 220, Marcel Dekker, New York, 2001, 27–47 | MR | Zbl

[2] A. K. Bhuniya and K. Jana, “Bi-ideals in $k$-regular and intra $k$-regular semirings”, Discissions Mathematicae-General Algebra and Applications, 31 (2011), 5–23 | DOI | MR

[3] G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc., 1967 | MR | Zbl

[4] R. Chinram and K. Tinpum, “A note on Minimal Bi-ideal in Ordered $\Gamma$-Semigroups”, International Mathematical Forum, 4:1 (2009), 1–5 | MR | Zbl

[5] L. Fuchs and R. Reis, “On lattice-ordered commutative semigroups”, Algebra universalis, 50 (2003), 341–357 | DOI | MR | Zbl

[6] R. H. Good and D. R. Hughes, “Associated groups for semigroup”, Bull. Amer. Math. Soc., 58 (1952), 624–625

[7] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995 | MR | Zbl

[8] A. Iampan, “On bi-ideals of semigroups”, Lobachevskii J. Math., 29:2 (2008), 68–72 | DOI | MR | Zbl

[9] K. Jana, “$k$-bi-ideals and quasi $k$-ideals in $k$-Clifford and left $k$-Clifford semirings”, Southeast Asian Bulletin of Mathematics, 37 (2013), 201–210 | MR | Zbl

[10] K. M. Kapp, “On bi-ideals and quasi-ideals in semigroups”, Publ. Math. Debrecan, 16 (1969), 179–185 | MR

[11] K. M. Kapp, “Bi-ideals in associative rings and semigroups”, Acta. Sci. Math., 33 (1972), 307–314 | MR | Zbl

[12] N. Kehayopulu, “A characterization of regular $le$-semigroups”, Semigroup Forum, 23 (1981), 85–86 | DOI | MR | Zbl

[13] N. Kehayopulu, “On regular $le$-semigroups”, Semigroup Forum, 49 (1994), 267–269 | DOI | MR | Zbl

[14] N. Kehayopulu, J. S. Ponizovskii and M. Tsingelis, “Bi-ideals in ordered semigroups and ordered groups”, J. Math. Sci., 112:4 (2002), 4353–4354 | DOI | MR

[15] W. Krull, “Axiomatische begründung der allgemeinen idealtheorie”, Sitzungsber. phys.-med. Soz. Erlangen, 56 (1924), 47–63 | Zbl

[16] S. Lajos, “On the bi-ideals in semigroups”, Proc. Japan. Acad., 45 (1969), 710–712 | DOI | MR | Zbl

[17] S. Lajos and F. Szaaz, “Bi-ideals in associative rings”, Acta. Sci. Math., 32 (1971), 185–193 | MR | Zbl

[18] S. Li and Y. He, “On semigroups whose bi-ideals are strongly prime”, International J. Algebra, 1:6 (2007), 263–268 | MR | Zbl

[19] M. M. Miccoli, “Bi-ideals in regular semigroups and orthogroups”, Acta. Math. Hung., 47:1–2 (1986), 3–6 | DOI | MR | Zbl

[20] K. S. S. Nambooripad, “Pseudo-semilattices and biordered sets I”, Simon Stevin, 55 (1981), 103–110 | MR | Zbl

[21] P. Petro and E. Pasku, “The Green-Kehayopulu relation $\mathcal{H}$ in $le$-Semigroups”, Semigroup Forum, 65 (2002), 33–42 | DOI | MR | Zbl

[22] E. Pasku and P. Petro, “The relation $\mathcal{B}$ in le-semigroups”, Semigroup Forum, 75 (2007), 427–437 | DOI | MR | Zbl

[23] X. Xu and J. Ma, “A note on Minimal Bi-ideals in Ordered Semigroups”, Southeast Asian Bulletin of Mathematics, 27 (2003), 149–154 | MR | Zbl

[24] Y. Zalcstein, “Locally testable semigroups”, Semigroup Forum, 5 (1973), 216–227 | DOI | MR | Zbl