Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_1_a8, author = {Andrei Kukharev and Gena Puninski}, title = {Serial group rings of finite groups. {General} linear and close groups}, journal = {Algebra and discrete mathematics}, pages = {115--125}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a8/} }
TY - JOUR AU - Andrei Kukharev AU - Gena Puninski TI - Serial group rings of finite groups. General linear and close groups JO - Algebra and discrete mathematics PY - 2015 SP - 115 EP - 125 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a8/ LA - en ID - ADM_2015_20_1_a8 ER -
Andrei Kukharev; Gena Puninski. Serial group rings of finite groups. General linear and close groups. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a8/
[1] J. L. Alperin, Local Representation Theory, Cambridge University Press, 1981 | MR
[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer Graduate Texts in Math., 13, 2nd edition, 1992 | DOI | MR | Zbl
[3] M. Auslander, I. Reiten, S. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge, 1995 | MR | Zbl
[4] Y. Baba, K. Oshiro, Classical Artinian Rings, World Scient. Publ., 2009 | Zbl
[5] L. Dornhoff, Group representation theory, Part A: Ordinary Representation Theory, Pure and applied mathematics, 7, New York, 1971 | MR | Zbl
[6] D. Eisenbud, P. Griffith, “Serial rings”, J. Algebra, 17 (1971), 389–400 | DOI | MR | Zbl
[7] W. Feit, The Representation Theory of Finite Groups, Mathematical Library, 25, North Holland, 1982 | MR | Zbl
[8] P. Fong, B. Srinivasan, “Blocks with cyclic defect groups in $\mathrm{GL}(n,q)$”, Bull. Amer. Math. Soc., 3 (1980), 1041–1044 | DOI | MR | Zbl
[9] P. Fong, B. Srinivasan, “Brauer trees in $\mathrm{GL}(n,q)$”, Math. Z., 187 (1984), 81–88 | DOI | MR | Zbl
[10] D. G. Higman, “Indecomposable representations at characteristic $p$”, Duke J. Math., 21 (1954), 377–381 | DOI | MR | Zbl
[11] G. Hiss, K. Lux, Brauer Trees of Sporadic Groups, 1989, Oxford | MR | Zbl
[12] A. Kukharev, “Seriality of group rings of unimodular projective groups”, Proc. of the 71th Scientific Conf. of Students and PhD students of Belarusian State University, Part 1 (Minsk, May 18–21, 2014), 11–14
[13] A. Kukharev, G. Puninski, “Serial group rings of finite groups. $p$-solvability”, Algebra Discrete Math., 16 (2013), 201–216 | MR | Zbl
[14] A. Kukharev, G. Puninski, “The seriality of group rings of alternating and symmetric groups”, Vestnik of Belarusian State University, Mathemathics and Informatics series, 2 (2014), 61–64
[15] A. Kukharev, G. Puninski, “Serial group rings of finite groups. Sporadic simple groups and Suzuki groups”, Notes Research Semin. Steklov Institute Sanct-Petersb., 435, 2015, 73–94
[16] A. Kukharev, G. Puninski, Yu. Volkov, “The seriality of the group ring of a finite group depends only of characteristic of the field”, Notes Research Semin. Steklov Institute Sanct-Petersb., 423, 2014, 57–66
[17] K. Lux, H. Pahlings, Representations of Groups: a Computational Approach, Cambrodge Studies in Advanced Mathmeatics, 124, 2010 | MR | Zbl
[18] K. Morita, “On group rings over a modular field which possess radicals expressible as principal ideal”, Sci. Repts. Tokyo Daigaku, 4 (1951), 177–194 | MR | Zbl
[19] G. Puninski, Serial Rings, Kluwer, 2001 | MR | Zbl
[20] B. Srinivasan, “On the indecomposable representations of a certain class of groups”, Proc. Lond. Math. Soc., 10 (1960), 497–513 | DOI | MR | Zbl
[21] M. Stather, “Constructive Sylow theorems for the classical groups”, J. Algebra, 316 (2007), 536–559 | DOI | MR | Zbl
[22] A. J. Weir, “Sylow $p$-subgroups of the classical groups over finite fields with chacteristic prime to $p$”, Proc. Amer. Math. Soc., 6 (1955), 529–533 | MR | Zbl