Quivers of $3\times 3$-exponent matrices
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how to use generating exponent matrices to study the quivers of exponent matrices. We also describe the admissible quivers of $3\times 3$ exponent matrices.
Keywords: quiver, tiled order, exponent matrix.
@article{ADM_2015_20_1_a5,
     author = {M. Dokuchaev and V. Kirichenko and M. Plakhotnyk},
     title = {Quivers of $3\times 3$-exponent matrices},
     journal = {Algebra and discrete mathematics},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a5/}
}
TY  - JOUR
AU  - M. Dokuchaev
AU  - V. Kirichenko
AU  - M. Plakhotnyk
TI  - Quivers of $3\times 3$-exponent matrices
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 55
EP  - 68
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a5/
LA  - en
ID  - ADM_2015_20_1_a5
ER  - 
%0 Journal Article
%A M. Dokuchaev
%A V. Kirichenko
%A M. Plakhotnyk
%T Quivers of $3\times 3$-exponent matrices
%J Algebra and discrete mathematics
%D 2015
%P 55-68
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a5/
%G en
%F ADM_2015_20_1_a5
M. Dokuchaev; V. Kirichenko; M. Plakhotnyk. Quivers of $3\times 3$-exponent matrices. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a5/

[1] Dokuchaev M. A, Kirichenko V. V., Zelensky A. V., Zhuravlev V. N., “Gorenstein Matrices”, Algebra Discrete Math., 2005, no. 1, 8–29 | MR | Zbl

[2] Dokuchaev M., Kirichenko V., Plakhotnyk M., On one property of minimal exponent matrices, Prerpint in Trabalhos do Departamento de Matemática, Univ. de São Paulo, Instituto de Matemática e Ectatśctica, São Paulo, Brasil, 2013, 9 pp.

[3] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, rings and modules, v. 1, Mathematics and its Applications, 575, Kluwer Academic Publishers, Dordrecht, 2004 | MR | Zbl

[4] Kirichenko V. V., “On quasi Frobenius rings and Gorenstein orders”, Trudy Math. Steklov Inst., 148, 1978, 168–174 | MR | Zbl

[5] Kirichenko V. V., Zelensky A. V. and Zhuravlev V. N., “Exponent matrices and their quivers”, Bul. Acad. de Stiinte a Rep. Moldova, Matematica, 44:1 (2004), 57–66 | MR | Zbl

[6] Kirichenko V. V., Zelensky A. V. and Zhuravlev V. N., “Exponent matrices and tiled oreders over a discrete valuation rings”, Intern. Journ. of Algebra and Computation, 15:5–6 (2005), 997–1012 | DOI | MR | Zbl

[7] Kirichenko V. V., Khibina M. A., “Semiperfect semidistributive rings”, Infinite Groups and closed algebraic structures, Math. Inst., Kyiv, 1993, 457–480 | MR | Zbl

[8] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer, Dordrecht, 1998 | MR | Zbl

[9] Plakhotnyk V. V., “On minimal sets of integral non-negative solutions of a system of linear equations”, Visn., Ser. Fiz.-Mat. Nauky, Ky\"iv. Univ. Im. Tarasa Shevchenka, 2000, no. 3, 74–77 | Zbl

[10] Zavadski A. G., Kirichenko V. V., “Torsion free modules over prime rings”, Zap. Sci. Semin. LOMI USSR Akad. Sci., 57 (1976), 100–116 | MR | Zbl