Lie and Jordan structures of differentially semiprime rings
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 13-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of Lie and Jordan rings (denoted respectively by $R^L$ and $R^J$) associated with an associative ring $R$ are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of $R$, $R^L$ and $R^J$ are obtained.
Keywords: derivation, semiprime ring, Lie ring.
@article{ADM_2015_20_1_a2,
     author = {Orest D. Artemovych and Maria P. Lukashenko},
     title = {Lie and {Jordan} structures of differentially semiprime rings},
     journal = {Algebra and discrete mathematics},
     pages = {13--31},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/}
}
TY  - JOUR
AU  - Orest D. Artemovych
AU  - Maria P. Lukashenko
TI  - Lie and Jordan structures of differentially semiprime rings
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 13
EP  - 31
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/
LA  - en
ID  - ADM_2015_20_1_a2
ER  - 
%0 Journal Article
%A Orest D. Artemovych
%A Maria P. Lukashenko
%T Lie and Jordan structures of differentially semiprime rings
%J Algebra and discrete mathematics
%D 2015
%P 13-31
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/
%G en
%F ADM_2015_20_1_a2
Orest D. Artemovych; Maria P. Lukashenko. Lie and Jordan structures of differentially semiprime rings. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 13-31. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/