Lie and Jordan structures of differentially semiprime rings
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 13-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of Lie and Jordan rings (denoted respectively by $R^L$ and $R^J$) associated with an associative ring $R$ are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of $R$, $R^L$ and $R^J$ are obtained.
Keywords: derivation, semiprime ring, Lie ring.
@article{ADM_2015_20_1_a2,
     author = {Orest D. Artemovych and Maria P. Lukashenko},
     title = {Lie and {Jordan} structures of differentially semiprime rings},
     journal = {Algebra and discrete mathematics},
     pages = {13--31},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/}
}
TY  - JOUR
AU  - Orest D. Artemovych
AU  - Maria P. Lukashenko
TI  - Lie and Jordan structures of differentially semiprime rings
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 13
EP  - 31
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/
LA  - en
ID  - ADM_2015_20_1_a2
ER  - 
%0 Journal Article
%A Orest D. Artemovych
%A Maria P. Lukashenko
%T Lie and Jordan structures of differentially semiprime rings
%J Algebra and discrete mathematics
%D 2015
%P 13-31
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/
%G en
%F ADM_2015_20_1_a2
Orest D. Artemovych; Maria P. Lukashenko. Lie and Jordan structures of differentially semiprime rings. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 13-31. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a2/

[1] K. I. Beidar, A. V. Mikhalëv, “Ortogonal completeness and minimal prime ideals”, Trudy Sem. Petrovski, 10, 1984, 227–234 (Russian) | MR | Zbl

[2] H. E. Bell, A. A. Klein, “Combinatorial commutativity and finiteness conditions for rings”, Comm. Algebra, 29 (2001), 2935–2943 | DOI | MR | Zbl

[3] J. Bergen, I. N. Herstein, E. W. Kerr, “Lie ideals and derivations of prime rings”, J. Algebra, 71 (1981), 259–267 | DOI | MR | Zbl

[4] J. Bergen, S. Montgomery, D. S. Passmann, “Radicals of crossed products of enveloping algebras”, Israel J. Math., 59 (1987), 167–184 | DOI | MR | Zbl

[5] M. Brešar, M. A. Chebotar and W. S. Martindale (3rd), Functional identities, Birkhäuser Verlag, Basel–Boston–Berlin, 2000

[6] K. R. Goodearl, R. B. Warfield (Jr.), “Primitivity in differential operator rings”, Math. Z., 180 (1982), 503–523 | DOI | MR | Zbl

[7] I. N. Herstein, “On the Lie and Jordan rings of a simple associative ring”, Amer. J. Math., 77 (1955), 279–285 | DOI | MR | Zbl

[8] I. N. Herstein, “The Lie ring of a simple associative ring”, Duke Math. J., 22 (1955), 471–476 | DOI | MR | Zbl

[9] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago–London, 1965 | MR

[10] I. N. Herstein, Noncommutative rings, The Mathematical Association of America; J. Wiley and Sons, 1968 | MR | Zbl

[11] I. N. Herstein, “On the Lie structure of an associative ring”, J. Algebra, 14 (1970), 561–571 | DOI | MR | Zbl

[12] I. N. Herstein, Rings with involution, The University of Chicago Press, Chicago–London, 1976 | MR | Zbl

[13] N. Jacobson, Lie algebras, Interscience, New York, 1962 | MR | Zbl

[14] N. Jacobson, “Structure and representations of Jordan algebras”, Amer. Math. Soc. Colloq. Publ., 39, Providence, R. I., 1968 | MR | Zbl

[15] C. R. Jordan, D. A. Jordan, “The Lie structure of a commutative ring with derivation”, J. London Math. Soc. (2), 18 (1978), 39–49 | DOI | MR | Zbl

[16] D. A. Jordan, “Noetherian Ore extensions and Jacobson rings”, J. London Math. Soc. (2), 10 (1975), 281–291 | DOI | MR | Zbl

[17] J. Lambek, Lectures on rings and modules, Blaisdell Publ. Co. A division of Ginn and Co. Waltham Mass., Toronto–London, 1966 | MR | Zbl

[18] W. S. Martindale (3rd), “Lie isomorphisms of prime rings”, Trans. Amer. Math. Soc., 142 (1969), 437–455 | DOI | MR | Zbl

[19] J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings, With the cooperation of L. W. Small, Grad. Stud. in Math., 30, Revised edition, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[20] K. McCrimmon, “On Herstein's theorem relating Jordan and associative algebras”, J. Algebra, 13 (1969), 382–392 | DOI | MR | Zbl

[21] A. Nowicki, “The Lie structure of a commutative ring with a derivation”, Arch. Math., 45 (1985), 328–335 | DOI | MR | Zbl

[22] E. C. Posner, “Differentiably simple rings”, Proc. Amer. Math. Soc., 11 (1960), 337–343 | DOI | MR | Zbl

[23] I. I. Zuev, “Lie ideals of associative rings”, Uspehi Mat. Nauk, 18 (1963), 155–158 (Russian) | MR | Zbl