On algebraic graph theory and non-bijective multivariate maps in cryptography
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 152-170

Voir la notice de l'article provenant de la source Math-Net.Ru

Special family of non-bijective multivariate maps $F_n$ of ${Z_m}^n$ into itself is constructed for $n = 2, 3, \dots$ and composite $m$. The map $F_n$ is injective on $\Omega_n=\{{\rm x}|x_1+x_2 + \dots x_n \in {Z_m}^* \}$ and solution of the equation $F_n({\rm x})={\rm b}, {\rm x}\in \Omega_n$ can be reduced to the solution of equation $z^r=\alpha$, $z \in {Z_m}^*$, $(r, \phi(m))=1$. The “hidden RSA cryptosystem” is proposed. Similar construction is suggested for the case $\Omega_n={{Z_m}^*}^n$.
Keywords: multivariate cryptography, linguistic graphs, hidden Eulerian equation, hidden discrete logarithm problem.
@article{ADM_2015_20_1_a11,
     author = {Vasyl Ustimenko},
     title = {On algebraic graph theory and non-bijective multivariate maps in cryptography},
     journal = {Algebra and discrete mathematics},
     pages = {152--170},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a11/}
}
TY  - JOUR
AU  - Vasyl Ustimenko
TI  - On algebraic graph theory and non-bijective multivariate maps in cryptography
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 152
EP  - 170
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a11/
LA  - en
ID  - ADM_2015_20_1_a11
ER  - 
%0 Journal Article
%A Vasyl Ustimenko
%T On algebraic graph theory and non-bijective multivariate maps in cryptography
%J Algebra and discrete mathematics
%D 2015
%P 152-170
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a11/
%G en
%F ADM_2015_20_1_a11
Vasyl Ustimenko. On algebraic graph theory and non-bijective multivariate maps in cryptography. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 152-170. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a11/