On the units of integral group ring of $C_{n}\times C_{6}$
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 142-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of $C_{n}\times C_{6}$ where $C_{n}=\langle a:a^{n}=1\rangle$ and $C_{6}=\langle x:x^{6}=1\rangle$. We show that $\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times C_{6}])$ can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group $\mathcal{U}_{1}(\mathbb{Z}C_{n})$. Notations mostly follow [11].
Keywords: group ring, integral group ring, unit group, unit problem.
@article{ADM_2015_20_1_a10,
     author = {\"O. K\"usm\"u\c{s}},
     title = {On the units of integral group ring of $C_{n}\times C_{6}$},
     journal = {Algebra and discrete mathematics},
     pages = {142--151},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/}
}
TY  - JOUR
AU  - Ö. Küsmüş
TI  - On the units of integral group ring of $C_{n}\times C_{6}$
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 142
EP  - 151
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/
LA  - en
ID  - ADM_2015_20_1_a10
ER  - 
%0 Journal Article
%A Ö. Küsmüş
%T On the units of integral group ring of $C_{n}\times C_{6}$
%J Algebra and discrete mathematics
%D 2015
%P 142-151
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/
%G en
%F ADM_2015_20_1_a10
Ö. Küsmüş. On the units of integral group ring of $C_{n}\times C_{6}$. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 142-151. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/

[1] Kelebek I. G. and T. Bilgin, “Characterization of $\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times K_{4}])$”, Eur. J. Pure and Appl. Math., 7:4 (2014), 462–471 | MR

[2] T. Bilgin, “Characterization of $\mathcal{U}_{1}(\mathbb{Z}C_{12})$”, Int. J. Pure Appl. Math., 14 (2004), 531–535 | MR | Zbl

[3] Ayoub R. G. and Ayoub C., “On The Group Ring of a Finite Abelian Group”, Bull. Aust. Math. Soc., 1 (1969), 245–261 | DOI | MR | Zbl

[4] Higman G., “The Units of Group Rings”, Proc. London Math. Soc., 46:2 (1940) | MR

[5] Karpilovsky G., Commutative Group Algebras, 1983, Marcel Dekker, New York | MR | Zbl

[6] Low R. M., “On The Units of Integral Group Ring $\mathbb{Z}[G\times C_{p}]$”, J. Algebra Appl., 7 (2008), 393–403 | DOI | MR | Zbl

[7] Y. Li, “Units of $\mathbb{Z}(G\times C_{2})$”, Quaest. Math., 21:3–4 (1998), 201–218 | MR | Zbl

[8] Jespers E., “Bicyclic Units in Some Integral Group Rings”, Canad. Math. Bull., 38:1 (1995), 80–86 | DOI | MR | Zbl

[9] Jespers E. and Leal G., “Describing Units of Integral Group Rings of Some 2-groups”, Comm. Algebra, 19 (1991), 1809–1827 | DOI | MR | Zbl

[10] Jespers E. and Parmenter M. M., “Bicyclic Units in $\mathbb{Z}S_{3}$”, Bull. Soc. Math. Belg. Ser. B, 44 (1992), 141–146 | MR | Zbl

[11] Milies C. P. and Sehgal S. K., An Introduction to Group Ring, Kluwer Academic Publishers, London, 2002 | MR