On the units of integral group ring of $C_{n}\times C_{6}$
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 142-151

Voir la notice de l'article provenant de la source Math-Net.Ru

There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of $C_{n}\times C_{6}$ where $C_{n}=\langle a:a^{n}=1\rangle$ and $C_{6}=\langle x:x^{6}=1\rangle$. We show that $\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times C_{6}])$ can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group $\mathcal{U}_{1}(\mathbb{Z}C_{n})$. Notations mostly follow [11].
Keywords: group ring, integral group ring, unit group, unit problem.
@article{ADM_2015_20_1_a10,
     author = {\"O. K\"usm\"u\c{s}},
     title = {On the units of integral group ring of $C_{n}\times C_{6}$},
     journal = {Algebra and discrete mathematics},
     pages = {142--151},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/}
}
TY  - JOUR
AU  - Ö. Küsmüş
TI  - On the units of integral group ring of $C_{n}\times C_{6}$
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 142
EP  - 151
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/
LA  - en
ID  - ADM_2015_20_1_a10
ER  - 
%0 Journal Article
%A Ö. Küsmüş
%T On the units of integral group ring of $C_{n}\times C_{6}$
%J Algebra and discrete mathematics
%D 2015
%P 142-151
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/
%G en
%F ADM_2015_20_1_a10
Ö. Küsmüş. On the units of integral group ring of $C_{n}\times C_{6}$. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 142-151. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/