Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_1_a10, author = {\"O. K\"usm\"u\c{s}}, title = {On the units of integral group ring of $C_{n}\times C_{6}$}, journal = {Algebra and discrete mathematics}, pages = {142--151}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/} }
Ö. Küsmüş. On the units of integral group ring of $C_{n}\times C_{6}$. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 142-151. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a10/
[1] Kelebek I. G. and T. Bilgin, “Characterization of $\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times K_{4}])$”, Eur. J. Pure and Appl. Math., 7:4 (2014), 462–471 | MR
[2] T. Bilgin, “Characterization of $\mathcal{U}_{1}(\mathbb{Z}C_{12})$”, Int. J. Pure Appl. Math., 14 (2004), 531–535 | MR | Zbl
[3] Ayoub R. G. and Ayoub C., “On The Group Ring of a Finite Abelian Group”, Bull. Aust. Math. Soc., 1 (1969), 245–261 | DOI | MR | Zbl
[4] Higman G., “The Units of Group Rings”, Proc. London Math. Soc., 46:2 (1940) | MR
[5] Karpilovsky G., Commutative Group Algebras, 1983, Marcel Dekker, New York | MR | Zbl
[6] Low R. M., “On The Units of Integral Group Ring $\mathbb{Z}[G\times C_{p}]$”, J. Algebra Appl., 7 (2008), 393–403 | DOI | MR | Zbl
[7] Y. Li, “Units of $\mathbb{Z}(G\times C_{2})$”, Quaest. Math., 21:3–4 (1998), 201–218 | MR | Zbl
[8] Jespers E., “Bicyclic Units in Some Integral Group Rings”, Canad. Math. Bull., 38:1 (1995), 80–86 | DOI | MR | Zbl
[9] Jespers E. and Leal G., “Describing Units of Integral Group Rings of Some 2-groups”, Comm. Algebra, 19 (1991), 1809–1827 | DOI | MR | Zbl
[10] Jespers E. and Parmenter M. M., “Bicyclic Units in $\mathbb{Z}S_{3}$”, Bull. Soc. Math. Belg. Ser. B, 44 (1992), 141–146 | MR | Zbl
[11] Milies C. P. and Sehgal S. K., An Introduction to Group Ring, Kluwer Academic Publishers, London, 2002 | MR