Universal property of skew $PBW$ extensions
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 1-12

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincaré-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras.
Keywords: skew polynomial rings, skew $PBW$ extensions, $PBW$ bases, quantum algebras.
@article{ADM_2015_20_1_a1,
     author = {Juan Pablo Acosta and Oswaldo Lezama},
     title = {Universal property of skew $PBW$ extensions},
     journal = {Algebra and discrete mathematics},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/}
}
TY  - JOUR
AU  - Juan Pablo Acosta
AU  - Oswaldo Lezama
TI  - Universal property of skew $PBW$ extensions
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 1
EP  - 12
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/
LA  - en
ID  - ADM_2015_20_1_a1
ER  - 
%0 Journal Article
%A Juan Pablo Acosta
%A Oswaldo Lezama
%T Universal property of skew $PBW$ extensions
%J Algebra and discrete mathematics
%D 2015
%P 1-12
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/
%G en
%F ADM_2015_20_1_a1
Juan Pablo Acosta; Oswaldo Lezama. Universal property of skew $PBW$ extensions. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/