Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_1_a1, author = {Juan Pablo Acosta and Oswaldo Lezama}, title = {Universal property of skew $PBW$ extensions}, journal = {Algebra and discrete mathematics}, pages = {1--12}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/} }
Juan Pablo Acosta; Oswaldo Lezama. Universal property of skew $PBW$ extensions. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/
[1] Acosta J. P., Chaparro C., Lezama O., Ojeda I., and Venegas C., “Ore and Goldie theorems for skew PBW extensions”, Asian-European Journal of Mathematics, 6:4 (2013), 1350061-1, 20 pp. | DOI | MR | Zbl
[2] Acosta J. P., Ideales Primos en Extensiones $PBW$ torcidas, Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, 2014
[3] Chaparro C., “Valuations of skew quantum polynomials”, Asian-European Journal of Mathematics, 8:2 (2015) | MR | Zbl
[4] Dixmier J., Enveloping Algebras, GSM, 11, AMS, 1996 | MR | Zbl
[5] Bueso J., Gómez-Torrecillas J. and Verschoren A., Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups, Kluwer, 2003
[6] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, GTM, 9, Springer, 1980 | MR | Zbl
[7] Lezama O. and Gallego C., “Gröbner bases for ideals of sigma-PBW extensions”, Communications in Algebra, 39:1 (2011), 50–75 | MR | Zbl
[8] Lezama O., Reyes M., “Some homological properties of skew $PBW$ extensions”, Comm. in Algebra, 42 (2014), 1200–1230 | DOI | MR | Zbl
[9] McConnell J. and Robson J., Non-commutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001
[10] Venegas C., “Automorphisms for skew $PBW$ extensions and skew quantum polynomial rings”, Communications in Algebra, 42:5 (2015), 1877–1897 | DOI | MR