Universal property of skew $PBW$ extensions
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincaré-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras.
Keywords: skew polynomial rings, skew $PBW$ extensions, $PBW$ bases, quantum algebras.
@article{ADM_2015_20_1_a1,
     author = {Juan Pablo Acosta and Oswaldo Lezama},
     title = {Universal property of skew $PBW$ extensions},
     journal = {Algebra and discrete mathematics},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/}
}
TY  - JOUR
AU  - Juan Pablo Acosta
AU  - Oswaldo Lezama
TI  - Universal property of skew $PBW$ extensions
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 1
EP  - 12
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/
LA  - en
ID  - ADM_2015_20_1_a1
ER  - 
%0 Journal Article
%A Juan Pablo Acosta
%A Oswaldo Lezama
%T Universal property of skew $PBW$ extensions
%J Algebra and discrete mathematics
%D 2015
%P 1-12
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/
%G en
%F ADM_2015_20_1_a1
Juan Pablo Acosta; Oswaldo Lezama. Universal property of skew $PBW$ extensions. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a1/

[1] Acosta J. P., Chaparro C., Lezama O., Ojeda I., and Venegas C., “Ore and Goldie theorems for skew PBW extensions”, Asian-European Journal of Mathematics, 6:4 (2013), 1350061-1, 20 pp. | DOI | MR | Zbl

[2] Acosta J. P., Ideales Primos en Extensiones $PBW$ torcidas, Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, 2014

[3] Chaparro C., “Valuations of skew quantum polynomials”, Asian-European Journal of Mathematics, 8:2 (2015) | MR | Zbl

[4] Dixmier J., Enveloping Algebras, GSM, 11, AMS, 1996 | MR | Zbl

[5] Bueso J., Gómez-Torrecillas J. and Verschoren A., Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups, Kluwer, 2003

[6] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, GTM, 9, Springer, 1980 | MR | Zbl

[7] Lezama O. and Gallego C., “Gröbner bases for ideals of sigma-PBW extensions”, Communications in Algebra, 39:1 (2011), 50–75 | MR | Zbl

[8] Lezama O., Reyes M., “Some homological properties of skew $PBW$ extensions”, Comm. in Algebra, 42 (2014), 1200–1230 | DOI | MR | Zbl

[9] McConnell J. and Robson J., Non-commutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001

[10] Venegas C., “Automorphisms for skew $PBW$ extensions and skew quantum polynomial rings”, Communications in Algebra, 42:5 (2015), 1877–1897 | DOI | MR