On c-normal and hypercentrally embeded subgroups of finite groups
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 270-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we investigate the structure of a finite group $G$ under the assumption that some subgroups of $G$ are c-normal in $G$. The main theorem is as follows: Theorem A. Let $E$ be a normal finite group of $G$. If all subgroups of $E_{p}$ with order $d_{p}$ and 2$d_{p}$ (if $p=2$ and $E_{p}$ is not an abelian nor quaternion free 2-group) are c-normal in $G$, then $E$ is $p$-hypercyclically embedded in $G$. We give some applications of the theorem and generalize some known results.
Keywords: c-normal, hypercenter, p-nilpotent.
Mots-clés : p-supersolvable
@article{ADM_2015_19_2_a9,
     author = {Ning Su and Yanming Wang},
     title = {On c-normal and hypercentrally embeded subgroups of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {270--282},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/}
}
TY  - JOUR
AU  - Ning Su
AU  - Yanming Wang
TI  - On c-normal and hypercentrally embeded subgroups of finite groups
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 270
EP  - 282
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/
LA  - en
ID  - ADM_2015_19_2_a9
ER  - 
%0 Journal Article
%A Ning Su
%A Yanming Wang
%T On c-normal and hypercentrally embeded subgroups of finite groups
%J Algebra and discrete mathematics
%D 2015
%P 270-282
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/
%G en
%F ADM_2015_19_2_a9
Ning Su; Yanming Wang. On c-normal and hypercentrally embeded subgroups of finite groups. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 270-282. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/

[1] Ballester-Bolinches A., Wang Yanming, “Finite groups with some C-normal minimal subgroups”, J. Pure Appl. Algebra, 153:2 (2000), 121–127 | DOI | MR | Zbl

[2] Asaad M., Ramadan M., “Finite groups whose minimal subgroups are c-supplemented”, Comm. Algebra, 36:3 (2008), 1034–1040 | DOI | MR | Zbl

[3] Doerk R. and Hawkes T., Finite soluble groups, Walter De Gruyter, Berlin–New York, 1992 | MR

[4] Terence M. Gagen, Topics in finite groups, Cambridge University press, London, 1976 | MR | Zbl

[5] Guo Xiuyun, Shum K. P., “On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups”, Arch. Math. (Basel), 80:6 (2003), 561–569 | DOI | MR | Zbl

[6] Dornhoff Larry, “M-groups and 2-groups”, Math. Z, 100 (1967), 226–256 | DOI | MR | Zbl

[7] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, 1994 | MR | Zbl

[8] Skiba Alexander N., “A note on c-normal subgroups of finite groups”, Algebra Discrete Math., 2005, no. 3, 85–95 | MR | Zbl

[9] Jaraden Jehad J., Skiba Alexander N., “On c-normal subgroups of finite groups”, Comm. Algebra, 35:11 (2007), 3776–3788 | DOI | MR | Zbl

[10] Ballester-Bolinches A., Wang Yanming, Xiuyun Guo, “c-supplemented subgroups of finite groups”, Glasg. Math. J., 42:3 (2000), 383–389 | DOI | MR | Zbl

[11] Wang Yanming, “c-normality of groups and its properties”, J. Algebra, 180:3 (1996), 954–965 | DOI | MR | Zbl

[12] Between nilpotent and solvable, eds. Weinstein M., Bray H., Polygonal Publishing House, Passaic, 1982 | MR | Zbl

[13] Wei Huaquan, Wang Yanming, “On c*-normality and its properties”, J. Group Theory, 10:2 (2007), 211–223 | DOI | MR | Zbl