On c-normal and hypercentrally embeded subgroups of finite groups
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 270-282

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we investigate the structure of a finite group $G$ under the assumption that some subgroups of $G$ are c-normal in $G$. The main theorem is as follows: Theorem A. Let $E$ be a normal finite group of $G$. If all subgroups of $E_{p}$ with order $d_{p}$ and 2$d_{p}$ (if $p=2$ and $E_{p}$ is not an abelian nor quaternion free 2-group) are c-normal in $G$, then $E$ is $p$-hypercyclically embedded in $G$. We give some applications of the theorem and generalize some known results.
Keywords: c-normal, hypercenter, p-nilpotent.
Mots-clés : p-supersolvable
@article{ADM_2015_19_2_a9,
     author = {Ning Su and Yanming Wang},
     title = {On c-normal and hypercentrally embeded subgroups of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {270--282},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/}
}
TY  - JOUR
AU  - Ning Su
AU  - Yanming Wang
TI  - On c-normal and hypercentrally embeded subgroups of finite groups
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 270
EP  - 282
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/
LA  - en
ID  - ADM_2015_19_2_a9
ER  - 
%0 Journal Article
%A Ning Su
%A Yanming Wang
%T On c-normal and hypercentrally embeded subgroups of finite groups
%J Algebra and discrete mathematics
%D 2015
%P 270-282
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/
%G en
%F ADM_2015_19_2_a9
Ning Su; Yanming Wang. On c-normal and hypercentrally embeded subgroups of finite groups. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 270-282. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a9/