Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_2_a5, author = {Dae San Kim}, title = {Recursive formulas generating power moments of multi-dimensional {Kloosterman} sums and $m$-multiple power moments of {Kloosterman} sums}, journal = {Algebra and discrete mathematics}, pages = {213--228}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a5/} }
TY - JOUR AU - Dae San Kim TI - Recursive formulas generating power moments of multi-dimensional Kloosterman sums and $m$-multiple power moments of Kloosterman sums JO - Algebra and discrete mathematics PY - 2015 SP - 213 EP - 228 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a5/ LA - en ID - ADM_2015_19_2_a5 ER -
%0 Journal Article %A Dae San Kim %T Recursive formulas generating power moments of multi-dimensional Kloosterman sums and $m$-multiple power moments of Kloosterman sums %J Algebra and discrete mathematics %D 2015 %P 213-228 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a5/ %G en %F ADM_2015_19_2_a5
Dae San Kim. Recursive formulas generating power moments of multi-dimensional Kloosterman sums and $m$-multiple power moments of Kloosterman sums. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 213-228. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a5/
[1] L. Carlitz, “Gauss sums over finite fields of order $2^n$”, Acta. Arith., 15 (1969), 247–265 | MR | Zbl
[2] L. Carlitz, “A note on exponential sums”, Pacific J. Math., 30 (1969), 35–37 | DOI | MR | Zbl
[3] R. J. Evans, “Seventh power moments of Kloosterman sums”, Israel J. Math., 175 (2010), 349–362 | DOI | MR | Zbl
[4] K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, “The modularity of the Barth-Nieto quintic and its relatives”, Adv. Geom., 1 (2001), 263–289 | DOI | MR | Zbl
[5] D. S. Kim, “Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums”, Ann. Mat. Pura Appli., 190 (2011), 61–76 | DOI | MR | Zbl
[6] D. S. Kim, “Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups”, Adv. Math. Commun., 3 (2009), 167–178 | DOI | MR | Zbl
[7] D. S. Kim, “Codes associated with $O^+(2n,2^r)$ and power moments of Kloosterman sums”, Integers, 12 (2012), 237–257 | MR | Zbl
[8] H. D. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR
[9] G. Lachaud and J. Wolfmann, “The weights of the orthogonals of the extended quadratic binary Goppa codes”, IEEE Trans. Inform. Theory, 36 (1990), 686–692 | DOI | MR | Zbl
[10] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., 20, Cambridge University Press, Cambridge, 1987 | MR
[11] R. Livné, “Motivic orthogonal two-dimensional representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$”, Israel J. Math., 92 (1995), 149–156 | DOI | MR | Zbl
[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1998
[13] M. Moisio, “The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code”, IEEE Trans. Inform. Theory, 53 (2007), 843–847 | DOI | MR | Zbl
[14] M. Moisio, “On the duals of binary hyper-Kloosterman codes”, SIAM J. Disc. Math., 22 (2008), 273–287 | DOI | MR | Zbl
[15] M. Moisio, K. Ranto, M. Rinta-aho and Väänänen, “On the weight distribution of the duals of irreducible cyclic codes, cyclic codes with two zeros and hyper-Kloosterman codes”, Adv. Appl. Discrete Math., 3 (2009), 155–164 | MR
[16] C. Peters, J. Top, and M. van der Vlugt, “The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes”, J. Reine Angew. Math., 432 (1992), 151–176 | MR | Zbl
[17] H. Salié, “Über die Kloostermanschen Summen $\mathcal{S}(u,v;q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR
[18] R. Schoof and M. van der Vlugt, “Hecke operators and the weight distributions of certain codes”, J. Combin. Theory Ser. A, 57 (1991), 163–186 | DOI | MR | Zbl