Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_2_a3, author = {Rafayel Ruben Kamalian}, title = {On one-sided interval edge colorings of biregular bipartite graphs}, journal = {Algebra and discrete mathematics}, pages = {193--199}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a3/} }
Rafayel Ruben Kamalian. On one-sided interval edge colorings of biregular bipartite graphs. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 193-199. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a3/
[1] A. S. Asratian, Investigation of some mathematical model of Scheduling Theory, Doctoral Dissertation, Moscow University, 1980 (Russian)
[2] A. S. Asratian, C. J. Casselgren, “A sufficient condition for interval edge colorings of $(4,3)$-biregular bipartite graphs”, Research report LiTH-MAT-R-2006-07, Linköping University, 2006
[3] A. S. Asratian, C. J. Casselgren, “Some results on interval edge colorings of $(\alpha,\beta)$-biregular bipartite graphs”, Research report LiTH-MAT-R-2006-09, Linköping University, 2006 | MR
[4] A. S. Asratian, C. J. Casselgren, “On interval edge colorings of $(\alpha,\beta)$-biregular bipartite graphs”, Discrete Math., 307 (2007), 1951–1956 | DOI | MR | Zbl
[5] A. S. Asratian, C. J. Casselgren, J. Vandenbussche, D. B. West, “Proper path-factors and interval edge-coloring of $(3,4)$-biregular bigraphs”, J. of Graph Theory, 61 (2009), 88–97 | DOI | MR | Zbl
[6] A. S. Asratian, T. M. J. Denley, R. Haggkvist, Bipartite graphs and their applications, Cambridge Tracts in Mathematics, 131, Cambridge University Press, 1998 | MR | Zbl
[7] A. S. Asratian, R. R. Kamalian, “Interval colorings of edges of a multigraph”, Appl. Math., 5, Yerevan State University, 1987, 25–34 (Russian) | MR
[8] A. S. Asratian, R. R. Kamalian, “Investigation of interval edge-colorings of graphs”, Journal of Combinatorial Theory. Series B, 62:1 (1994), 34–43 | DOI | MR | Zbl
[9] M. A. Axenovich, “On interval colorings of planar graphs”, Congr. Numer., 159 (2002), 77–94 | MR | Zbl
[10] D. P. Geller and A. J. W. Hilton, “How to color the lines of a bigraph”, Networks, 4 (1974), 281–282 | DOI | MR | Zbl
[11] K. Giaro, Compact task scheduling on dedicated processors with no waiting periods, PhD thesis, Technical University of Gdansk, EIT faculty, Gdansk, 1999 (Polish)
[12] K. Giaro, “The complexity of consecutive $\Delta$-coloring of bipartite graphs: $4$ is easy, $5$ is hard”, Ars Combin., 47 (1997), 287–298 | MR | Zbl
[13] K. Giaro, M. Kubale and M. Malafiejski, “On the deficiency of bipartite graphs”, Discrete Appl. Math., 94 (1999), 193–203 | DOI | MR | Zbl
[14] H. M. Hansen, Scheduling with minimum waiting periods, Master's Thesis, Odense University, Odense, Denmark, 1992 (Danish)
[15] D. Hanson, C. O. M. Loten, B. Toft, “On interval colorings of bi-regular bipartite graphs”, Ars Combin., 50 (1998), 23–32 | MR | Zbl
[16] T. R. Jensen, B. Toft, Graph Coloring Problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995 | MR
[17] R. R. Kamalian, Interval Edge Colorings of Graphs, Doctoral dissertation, The Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990 (Russian)
[18] R. R. Kamalian, “On one-sided interval colorings of bipartite graphs”, the Herald of the RAU, 2010, no. 2, 3–11 (Russian)
[19] R. R. Kamalian, Interval colorings of complete bipartite graphs and trees, The Computing Centre of the Academy of Sciences of Armenia, Yerevan, 1989, preprint (Russian)
[20] M. Kubale, Graph Colorings, American Mathematical Society, 2004 | MR | Zbl
[21] P. A. Petrosyan, “Interval edge-colorings of complete graphs and $n$-dimensional cubes”, Discrete Math., 310 (2010), 1580–1587 | DOI | MR | Zbl
[22] P. A. Petrosyan, “On interval edge-colorings of multigraphs”, The Herald of the RAU, 2011, no. 1, 12–21 (Russian)
[23] P. A. Petrosyan, H. H. Khachatrian, “Interval non-edge-colorable bipartite graphs and multigraphs”, J. of Graph Theory, 76 (2014), 200–216 | DOI | MR | Zbl
[24] A. V. Pyatkin, “Interval coloring of $(3,4)$-biregular bipartite graphs having large cubic subgraphs”, J. of Graph Theory, 47 (2004), 122–128 | DOI | MR | Zbl
[25] S. V. Sevast'janov, “Interval colorability of the edges of a bipartite graph”, Metody Diskret. Analiza, 50 (1990), 61–72 (Russian) | MR
[26] V. G. Vizing, “The chromatic index of a multigraph”, Kibernetika, 3 (1965), 29–39 | MR | Zbl
[27] D. B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996 | MR
[28] F. Yang, X. Li, “Interval coloring of $(3,4)$-biregular bigraphs having two $(2,3)$-biregular bipartite subgraphs”, Appl. Math. Letters, 24 (2011), 1574–1577 | DOI | MR | Zbl
[29] Y. Zhao and J. G. Chang, “Consecutive Edge-Colorings of Generalized $\theta$-Graphs”, CGGA (2010), LNCS, 7033, eds. J. Akiyama et al., 2011, 214–225 | MR | Zbl