Projectivity and flatness over the graded ring of normalizing elements
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 172-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field, $H$ a cocommutative bialgebra, $A$ a commutative left $H$-module algebra, $\operatorname{Hom}(H,A)$ the $k$-algebra of the $k$-linear maps from $H$ to $A$ under the convolution product, $Z(H,A)$ the submonoid of $\operatorname{Hom}(H,A)$ whose elements satisfy the cocycle condition and $G$ any subgroup of the monoid $Z(H,A)$. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of $A$. When $A$ is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of $A$ replacing $Z(H,A)$ by the set $\chi(H,Z(A)^H)$ of all algebra maps from $H$ to $Z(A)^H$, where $Z(A)$ is the center of $A$.
Keywords: projective module, flat module, bialgebra, smash product, graded ring, normalizing element, weakly semi-invariant element.
@article{ADM_2015_19_2_a2,
     author = {T. Gu\'ed\'enon},
     title = {Projectivity and flatness over the graded ring of normalizing elements},
     journal = {Algebra and discrete mathematics},
     pages = {172--192},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/}
}
TY  - JOUR
AU  - T. Guédénon
TI  - Projectivity and flatness over the graded ring of normalizing elements
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 172
EP  - 192
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/
LA  - en
ID  - ADM_2015_19_2_a2
ER  - 
%0 Journal Article
%A T. Guédénon
%T Projectivity and flatness over the graded ring of normalizing elements
%J Algebra and discrete mathematics
%D 2015
%P 172-192
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/
%G en
%F ADM_2015_19_2_a2
T. Guédénon. Projectivity and flatness over the graded ring of normalizing elements. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 172-192. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/

[1] T. Brzezinski and R. Wisbauer, Comodules and corings, London Math. Soc. Lect. Note Series, 309, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[2] S. Caenepeel and T. Guédénon, “Projectivity of a relative Hopf module over the subring of coinvariants”, Hopf Algebras (Chicago 2002), Lect. Notes in Pure and Appl. Math., 237, Dekker, New York, 2004, 97–108 | MR | Zbl

[3] S. Caenepeel and T. Guédénon, “Projectivity and flatness over the endomorphism ring of a finitely generated module”, Int. J. Math. Math. Sci., 30 (2004), 1581–1588 | DOI | MR

[4] S. Caenepeel, S. Raianu and F. Van Oystaeyen, “Induction and coinduction for Hopf algebras: Applications”, J. Algebra, 165 (1994), 204–222 | DOI | MR | Zbl

[5] J. J. Garcia and A. Del Rio, “On flatness and projectivity of a ring as a module over a fixed subring”, Math. Scand., 76:2 (1995), 179–193 | MR | Zbl

[6] T. Guédénon, “Projectivity and flatness over the endomorphism ring of a finitely generated comodule”, Beitrage zur Algebra und Geometrie, 49:2 (2008), 399–408 | MR | Zbl

[7] T. Guédénon, “Projectivity and flatness over the colour endomorphism ring of a finitely generated graded comodule”, Beitrage zur Algebra und Geometrie, 49:2 (2008), 399–408 | MR | Zbl

[8] T. Guédénon, “Projectivity and flatness over the graded ring of semi-coinvariants”, Algebra and Discrete Math., 10:1 (2010), 42–56 | MR | Zbl

[9] T. Guédénon, “On the $H$-finite cohomology”, Journ. of Algebra, 273:2 (2004), 455–488 | DOI | MR | Zbl

[10] T. Guédénon, “Picard groups of rings of coinvariants”, Algebra and Represent. Theory, 11:1 (2008), 25–42 | DOI | MR | Zbl

[11] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, 1995 | DOI | MR | Zbl

[12] S. Montgomery, Hopf algebra and their actions on rings, AMS, Providence, 1993 | MR

[13] C. Nastasescu and F. Van Oystaeyen, Methods of graded rings, Lecture Notes Math., Springer, 2004 | DOI | MR | Zbl

[14] M. Sweedler, Hopf algebras, Benjamin, New York, 1969 | MR | Zbl