Projectivity and flatness over the graded ring of normalizing elements
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 172-192

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field, $H$ a cocommutative bialgebra, $A$ a commutative left $H$-module algebra, $\operatorname{Hom}(H,A)$ the $k$-algebra of the $k$-linear maps from $H$ to $A$ under the convolution product, $Z(H,A)$ the submonoid of $\operatorname{Hom}(H,A)$ whose elements satisfy the cocycle condition and $G$ any subgroup of the monoid $Z(H,A)$. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of $A$. When $A$ is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of $A$ replacing $Z(H,A)$ by the set $\chi(H,Z(A)^H)$ of all algebra maps from $H$ to $Z(A)^H$, where $Z(A)$ is the center of $A$.
Keywords: projective module, flat module, bialgebra, smash product, graded ring, normalizing element, weakly semi-invariant element.
@article{ADM_2015_19_2_a2,
     author = {T. Gu\'ed\'enon},
     title = {Projectivity and flatness over the graded ring of normalizing elements},
     journal = {Algebra and discrete mathematics},
     pages = {172--192},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/}
}
TY  - JOUR
AU  - T. Guédénon
TI  - Projectivity and flatness over the graded ring of normalizing elements
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 172
EP  - 192
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/
LA  - en
ID  - ADM_2015_19_2_a2
ER  - 
%0 Journal Article
%A T. Guédénon
%T Projectivity and flatness over the graded ring of normalizing elements
%J Algebra and discrete mathematics
%D 2015
%P 172-192
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/
%G en
%F ADM_2015_19_2_a2
T. Guédénon. Projectivity and flatness over the graded ring of normalizing elements. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 172-192. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/