Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_2_a2, author = {T. Gu\'ed\'enon}, title = {Projectivity and flatness over the graded ring of normalizing elements}, journal = {Algebra and discrete mathematics}, pages = {172--192}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/} }
T. Guédénon. Projectivity and flatness over the graded ring of normalizing elements. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 172-192. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a2/
[1] T. Brzezinski and R. Wisbauer, Comodules and corings, London Math. Soc. Lect. Note Series, 309, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[2] S. Caenepeel and T. Guédénon, “Projectivity of a relative Hopf module over the subring of coinvariants”, Hopf Algebras (Chicago 2002), Lect. Notes in Pure and Appl. Math., 237, Dekker, New York, 2004, 97–108 | MR | Zbl
[3] S. Caenepeel and T. Guédénon, “Projectivity and flatness over the endomorphism ring of a finitely generated module”, Int. J. Math. Math. Sci., 30 (2004), 1581–1588 | DOI | MR
[4] S. Caenepeel, S. Raianu and F. Van Oystaeyen, “Induction and coinduction for Hopf algebras: Applications”, J. Algebra, 165 (1994), 204–222 | DOI | MR | Zbl
[5] J. J. Garcia and A. Del Rio, “On flatness and projectivity of a ring as a module over a fixed subring”, Math. Scand., 76:2 (1995), 179–193 | MR | Zbl
[6] T. Guédénon, “Projectivity and flatness over the endomorphism ring of a finitely generated comodule”, Beitrage zur Algebra und Geometrie, 49:2 (2008), 399–408 | MR | Zbl
[7] T. Guédénon, “Projectivity and flatness over the colour endomorphism ring of a finitely generated graded comodule”, Beitrage zur Algebra und Geometrie, 49:2 (2008), 399–408 | MR | Zbl
[8] T. Guédénon, “Projectivity and flatness over the graded ring of semi-coinvariants”, Algebra and Discrete Math., 10:1 (2010), 42–56 | MR | Zbl
[9] T. Guédénon, “On the $H$-finite cohomology”, Journ. of Algebra, 273:2 (2004), 455–488 | DOI | MR | Zbl
[10] T. Guédénon, “Picard groups of rings of coinvariants”, Algebra and Represent. Theory, 11:1 (2008), 25–42 | DOI | MR | Zbl
[11] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, 1995 | DOI | MR | Zbl
[12] S. Montgomery, Hopf algebra and their actions on rings, AMS, Providence, 1993 | MR
[13] C. Nastasescu and F. Van Oystaeyen, Methods of graded rings, Lecture Notes Math., Springer, 2004 | DOI | MR | Zbl
[14] M. Sweedler, Hopf algebras, Benjamin, New York, 1969 | MR | Zbl