A commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 295-301

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring.
Keywords: PM-ring, clean element, neat element, elementary divisor ring, stable range 1, neat range 1.
Mots-clés : Bezout domain
@article{ADM_2015_19_2_a11,
     author = {B. Zabavsky and A. Gatalevych},
     title = {A commutative {Bezout} $PM^{\ast}$ domain is an elementary divisor ring},
     journal = {Algebra and discrete mathematics},
     pages = {295--301},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/}
}
TY  - JOUR
AU  - B. Zabavsky
AU  - A. Gatalevych
TI  - A commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 295
EP  - 301
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/
LA  - en
ID  - ADM_2015_19_2_a11
ER  - 
%0 Journal Article
%A B. Zabavsky
%A A. Gatalevych
%T A commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring
%J Algebra and discrete mathematics
%D 2015
%P 295-301
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/
%G en
%F ADM_2015_19_2_a11
B. Zabavsky; A. Gatalevych. A commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 295-301. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/