Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_2_a11, author = {B. Zabavsky and A. Gatalevych}, title = {A commutative {Bezout} $PM^{\ast}$ domain is an elementary divisor ring}, journal = {Algebra and discrete mathematics}, pages = {295--301}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/} }
TY - JOUR AU - B. Zabavsky AU - A. Gatalevych TI - A commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring JO - Algebra and discrete mathematics PY - 2015 SP - 295 EP - 301 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/ LA - en ID - ADM_2015_19_2_a11 ER -
B. Zabavsky; A. Gatalevych. A commutative Bezout $PM^{\ast}$ domain is an elementary divisor ring. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 295-301. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a11/