On representations of permutations groups as isometry groups of $n$-semimetric spaces
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every finite permutation group can be represented as the isometry group of some $n$-semimetric space. We show that if a finite permutation group can be realized as the isometry group of some $n$-semimetric space then this permutation group can be represented as the isometry group of some $(n+1)$-semimetric space. The notion of the semimetric rank of a permutation group is introduced.
Keywords: $n$-semimetric, isometry group.
Mots-clés : permutation group
@article{ADM_2015_19_1_a7,
     author = {Oleg Gerdiy and Bogdana Oliynyk},
     title = {On representations of permutations groups as isometry groups of $n$-semimetric spaces},
     journal = {Algebra and discrete mathematics},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/}
}
TY  - JOUR
AU  - Oleg Gerdiy
AU  - Bogdana Oliynyk
TI  - On representations of permutations groups as isometry groups of $n$-semimetric spaces
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 58
EP  - 66
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/
LA  - en
ID  - ADM_2015_19_1_a7
ER  - 
%0 Journal Article
%A Oleg Gerdiy
%A Bogdana Oliynyk
%T On representations of permutations groups as isometry groups of $n$-semimetric spaces
%J Algebra and discrete mathematics
%D 2015
%P 58-66
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/
%G en
%F ADM_2015_19_1_a7
Oleg Gerdiy; Bogdana Oliynyk. On representations of permutations groups as isometry groups of $n$-semimetric spaces. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/

[1] Babai L., “Automorphism groups, isomorphism, reconstruction”, Handbook of Combinatorics, v. 2, eds. Graham R. L., Grotschel M., Lovasz L., North-Holland, Amsterdam, 1995, 1447–1540 | MR | Zbl

[2] Topics in algebraic graph theory, Encyclopedia of Mathematics and Its Applications, 102, eds. Beineke, Lowell W., Wilson, Robin J., Cameron, Peter J., Cambridge University Press, Cambridge, 2004 | MR | Zbl

[3] B. V. Oliynyk, “Metric realizable permutation groups”, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics and Mathematics, 2 (2013), 15–18

[4] L. Babai, “On a conjecture of M. E. Watkins on graphical regular representations of finite groups”, Compos. Math., 37 (1978), 291–296 | MR | Zbl

[5] C. D. Godsil, “GRR's for non-solvable groups”, Algebraic methods in graph theory (Szeged 1978), Colloq. Math. Soc. Janos Bolyai, 25, no. I, 1981, 221–239 | MR | Zbl

[6] W. Imrich, M. E. Watkins, “On graphical representations of cyclic extensions of groups”, Pac. J. Math., 55 (1974), 461–477 | DOI | MR | Zbl

[7] L. A. Nowitz, “On the non-existence of graphs with transitive generalized dicyclic groups”, J. Comb. Theory, 4 (1967), 49–51 | DOI | MR | Zbl

[8] L. A. Nowitz, M. E. Watkins, “Graphical regular representations of non-abelian groups. I”, Can. J. Math., 24 (1972), 993–1008 | DOI | MR | Zbl

[9] L. A. Nowitz, M. E. Watkins, “Graphical regular representations of non-abelian groups. II”, Can. J. Math., 24 (1972), 1009–1018 | DOI | MR | Zbl

[10] B. V. Oliynyk, “Metric realization of regular permutation groups”, Mat. Visn. Nauk. Tov. Im. Shevchenka, 8 (2011), 151–166

[11] J. D. Dixon, B. Mortimer, Permutation groups, Graduated Texts in Mathematis, 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl

[12] A. Kisielewicz, “Supergraphs And Graphical Complexity Of Permutation Groups”, Ars Combinatoria, 101 (2011), 193–207 | MR | Zbl

[13] Deza M., “$n$-semimetrics”, Eur. J. Comb., 21:6 (2000), 797–806 | DOI | MR | Zbl