Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_1_a7, author = {Oleg Gerdiy and Bogdana Oliynyk}, title = {On representations of permutations groups as isometry groups of $n$-semimetric spaces}, journal = {Algebra and discrete mathematics}, pages = {58--66}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/} }
TY - JOUR AU - Oleg Gerdiy AU - Bogdana Oliynyk TI - On representations of permutations groups as isometry groups of $n$-semimetric spaces JO - Algebra and discrete mathematics PY - 2015 SP - 58 EP - 66 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/ LA - en ID - ADM_2015_19_1_a7 ER -
Oleg Gerdiy; Bogdana Oliynyk. On representations of permutations groups as isometry groups of $n$-semimetric spaces. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/
[1] Babai L., “Automorphism groups, isomorphism, reconstruction”, Handbook of Combinatorics, v. 2, eds. Graham R. L., Grotschel M., Lovasz L., North-Holland, Amsterdam, 1995, 1447–1540 | MR | Zbl
[2] Topics in algebraic graph theory, Encyclopedia of Mathematics and Its Applications, 102, eds. Beineke, Lowell W., Wilson, Robin J., Cameron, Peter J., Cambridge University Press, Cambridge, 2004 | MR | Zbl
[3] B. V. Oliynyk, “Metric realizable permutation groups”, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics and Mathematics, 2 (2013), 15–18
[4] L. Babai, “On a conjecture of M. E. Watkins on graphical regular representations of finite groups”, Compos. Math., 37 (1978), 291–296 | MR | Zbl
[5] C. D. Godsil, “GRR's for non-solvable groups”, Algebraic methods in graph theory (Szeged 1978), Colloq. Math. Soc. Janos Bolyai, 25, no. I, 1981, 221–239 | MR | Zbl
[6] W. Imrich, M. E. Watkins, “On graphical representations of cyclic extensions of groups”, Pac. J. Math., 55 (1974), 461–477 | DOI | MR | Zbl
[7] L. A. Nowitz, “On the non-existence of graphs with transitive generalized dicyclic groups”, J. Comb. Theory, 4 (1967), 49–51 | DOI | MR | Zbl
[8] L. A. Nowitz, M. E. Watkins, “Graphical regular representations of non-abelian groups. I”, Can. J. Math., 24 (1972), 993–1008 | DOI | MR | Zbl
[9] L. A. Nowitz, M. E. Watkins, “Graphical regular representations of non-abelian groups. II”, Can. J. Math., 24 (1972), 1009–1018 | DOI | MR | Zbl
[10] B. V. Oliynyk, “Metric realization of regular permutation groups”, Mat. Visn. Nauk. Tov. Im. Shevchenka, 8 (2011), 151–166
[11] J. D. Dixon, B. Mortimer, Permutation groups, Graduated Texts in Mathematis, 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl
[12] A. Kisielewicz, “Supergraphs And Graphical Complexity Of Permutation Groups”, Ars Combinatoria, 101 (2011), 193–207 | MR | Zbl
[13] Deza M., “$n$-semimetrics”, Eur. J. Comb., 21:6 (2000), 797–806 | DOI | MR | Zbl