On representations of permutations groups as isometry groups of $n$-semimetric spaces
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 58-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every finite permutation group can be represented as the isometry group of some $n$-semimetric space. We show that if a finite permutation group can be realized as the isometry group of some $n$-semimetric space then this permutation group can be represented as the isometry group of some $(n+1)$-semimetric space. The notion of the semimetric rank of a permutation group is introduced.
Keywords: $n$-semimetric, isometry group.
Mots-clés : permutation group
@article{ADM_2015_19_1_a7,
     author = {Oleg Gerdiy and Bogdana Oliynyk},
     title = {On representations of permutations groups as isometry groups of $n$-semimetric spaces},
     journal = {Algebra and discrete mathematics},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/}
}
TY  - JOUR
AU  - Oleg Gerdiy
AU  - Bogdana Oliynyk
TI  - On representations of permutations groups as isometry groups of $n$-semimetric spaces
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 58
EP  - 66
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/
LA  - en
ID  - ADM_2015_19_1_a7
ER  - 
%0 Journal Article
%A Oleg Gerdiy
%A Bogdana Oliynyk
%T On representations of permutations groups as isometry groups of $n$-semimetric spaces
%J Algebra and discrete mathematics
%D 2015
%P 58-66
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/
%G en
%F ADM_2015_19_1_a7
Oleg Gerdiy; Bogdana Oliynyk. On representations of permutations groups as isometry groups of $n$-semimetric spaces. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a7/