Symmetries of automata
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 48-57

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given reachable automaton $\mathcal{A}$, we prove that the (state-) endomorphism monoid $\operatorname{End}({\mathcal{A}})$ divides its characteristic monoid $M({\mathcal{A}})$. Hence so does its (state-)automorphism group $\operatorname{Aut}({\mathcal{A}})$, and, for finite $\mathcal{A}$, $\operatorname{Aut}(\mathcal{A})$ is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group $G$ of $\mathcal{A}$, a finite automaton $\mathcal{A}$ (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of $M(\mathcal{A})$, namely the symmetry group $G$ and the quotient of $M(\mathcal{A})$ induced by the action of $G$. Moreover, this division is an embedding if $M(\mathcal{A})$ is transitive on states of $\mathcal{A}$. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.
@article{ADM_2015_19_1_a6,
     author = {Attila Egri-Nagy and Chrystopher L. Nehaniv},
     title = {Symmetries of automata},
     journal = {Algebra and discrete mathematics},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a6/}
}
TY  - JOUR
AU  - Attila Egri-Nagy
AU  - Chrystopher L. Nehaniv
TI  - Symmetries of automata
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 48
EP  - 57
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a6/
LA  - en
ID  - ADM_2015_19_1_a6
ER  - 
%0 Journal Article
%A Attila Egri-Nagy
%A Chrystopher L. Nehaniv
%T Symmetries of automata
%J Algebra and discrete mathematics
%D 2015
%P 48-57
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a6/
%G en
%F ADM_2015_19_1_a6
Attila Egri-Nagy; Chrystopher L. Nehaniv. Symmetries of automata. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a6/