Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_1_a6, author = {Attila Egri-Nagy and Chrystopher L. Nehaniv}, title = {Symmetries of automata}, journal = {Algebra and discrete mathematics}, pages = {48--57}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a6/} }
Attila Egri-Nagy; Chrystopher L. Nehaniv. Symmetries of automata. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a6/
[1] J. Araújo, P. V. Bünau, J. D. Mitchell, and M. Neunhöffer, “Computing automorphisms of semigroups”, Journal of Symbolic Computation, 45:3 (2010), 373–392 | DOI | MR | Zbl
[2] Pál Dömösi and Chrystopher L. Nehaniv, Algebraic Theory of Finite Automata Networks: An Introduction, SIAM Series on Discrete Mathematics and Applications, 11, Society for Industrial and Applied Mathematics, 2005 | MR
[3] Samuel Eilenberg, Automata, Languages and Machines, v. B, Academic Press, 1976 | Zbl
[4] A. C. Fleck, “On the automorphism group of an automaton”, Journal of the Association for Computing Machinery, 12:4 (1965), 566–569 | DOI | MR | Zbl
[5] Kenneth Krohn, John L. Rhodes, and Bret R. Tilson, “The prime decomposition theorem of the algebraic theory of machines”, Algebraic Theory of Machines, Languages, and Semigroups, chapter 5, ed. Michael A. Arbib, Academic Press, 1968, 81–125
[6] Chrystopher L. Nehaniv, “Algebra and formal models of understanding” (RIMS Kokyuroku, August 1996), Semigroups, Formal Languages and Computer Systems, 960, ed. Masami Ito, Kyoto Research Institute for Mathematics Sciences, 145–154 | MR
[7] John Rhodes, Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games, Foreword by Morris W. Hirsch, ed. Chrystopher L. Nehaniv, World Scientific Press, 2010 (Unpublished version: University of California at Berkeley, Mathematics Library, circa 1971) | MR | Zbl