Uncountably many $2$-generated just-infinite branch pro-2 groups
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 8-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this note is to prove that there are $2^{\aleph_0}$ non-isomorphic 2 generated just-infinite branch pro-2 groups.
@article{ADM_2015_19_1_a2,
     author = {Mustafa G\"okhan Benli and Rostislav Grigorchuk},
     title = {Uncountably many $2$-generated just-infinite branch pro-2 groups},
     journal = {Algebra and discrete mathematics},
     pages = {8--18},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/}
}
TY  - JOUR
AU  - Mustafa Gökhan Benli
AU  - Rostislav Grigorchuk
TI  - Uncountably many $2$-generated just-infinite branch pro-2 groups
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 8
EP  - 18
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/
LA  - en
ID  - ADM_2015_19_1_a2
ER  - 
%0 Journal Article
%A Mustafa Gökhan Benli
%A Rostislav Grigorchuk
%T Uncountably many $2$-generated just-infinite branch pro-2 groups
%J Algebra and discrete mathematics
%D 2015
%P 8-18
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/
%G en
%F ADM_2015_19_1_a2
Mustafa Gökhan Benli; Rostislav Grigorchuk. Uncountably many $2$-generated just-infinite branch pro-2 groups. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 8-18. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/