Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_1_a2, author = {Mustafa G\"okhan Benli and Rostislav Grigorchuk}, title = {Uncountably many $2$-generated just-infinite branch pro-2 groups}, journal = {Algebra and discrete mathematics}, pages = {8--18}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/} }
TY - JOUR AU - Mustafa Gökhan Benli AU - Rostislav Grigorchuk TI - Uncountably many $2$-generated just-infinite branch pro-2 groups JO - Algebra and discrete mathematics PY - 2015 SP - 8 EP - 18 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/ LA - en ID - ADM_2015_19_1_a2 ER -
Mustafa Gökhan Benli; Rostislav Grigorchuk. Uncountably many $2$-generated just-infinite branch pro-2 groups. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 8-18. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a2/
[1] Mustafa Gökhan Benli, “Profinite completion of {G}rigorchuk's group is not finitely presented”, Internat. J. Algebra Comput., 22:5 (2012), 1250045, 26 pp. | DOI | MR | Zbl
[2] M. G. Benli, R. Grigorchuk, and T. Nagnibeda, Universal groups of intermediate growth and their invariant random subgroups, 2015, arXiv: http://arxiv.org/abs/1503.01705 | MR
[3] Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000 | MR | Zbl
[4] R. I. Grigorchuk, W. N. Herfort, and P. A. Zalesskii, “The profinite completion of certain torsion $p$-groups”, Algebra (Moscow 1998), de Gruyter, Berlin, 2000, 113–123 | MR | Zbl
[5] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 939–985 | MR
[6] R. I. Grigorchuk, “Degrees of growth of $p$-groups and torsion-free groups”, Mat. Sb. (N. S.), 126(168):2 (1985), 194–214 | MR | Zbl
[7] R. I. Grigorchuk, “Just infinite branch groups”, New horizons in pro-$p$ groups, Progr. Math., 184, Birkhäuser Boston, Boston, MA, 2000, 121–179 | MR | Zbl
[8] Snopce Ilir, Uncountably many non-commensurable finitely presented pro-$p$ groups, 2015, arXiv: http://arxiv.org/abs/1504.00027 | MR
[9] Yaroslav Lavreniuk and Volodymyr Nekrashevych, “Rigidity of branch groups acting on rooted trees”, Geom. Dedicata, 89 (2002), 159–179 | MR | Zbl
[10] Volodymyr Nekrashevych, “Self-similar groups”, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005 | MR
[11] B. H. Neumann, “Some remarks on infinitem groups”, London. Math. Soc., 12 (1937), 120–127
[12] Nikolay Nikolov and Dan Segal, “On finitely generated profinite groups. I. Strong completeness and uniform bounds”, Ann. of Math. (2), 165:1 (2007), 171–238 | DOI | MR | Zbl
[13] E. L. Pervova, “Everywhere dense subgroups of a group of tree automorphisms”, Tr. Mat. Inst. Steklova, 231, Din. Sist., Avtom. i Beskon. Gruppy, 2000, 356–367 | MR | Zbl
[14] E. L. Pervova, Profinite topologies in just infinite branch groups, preprint 2002-154, Max Planck Institute for Mathematics, Bonn, Germany, 2002
[15] Luis Ribes and Pavel Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. / A Series of Modern Surveys in Mathematics \newblock Springer-Verlag, Berlin, 40, second edition, 2010 | MR | Zbl
[16] John S. Wilson, “On just infinite abstract and profinite groups”, New horizons in pro-$p$ groups, Progr. Math., 184, Birkhäuser Boston, Boston, MA, 2000, 181–203 | MR | Zbl