On subgroups of finite exponent in groups
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group $G$ of infinite exponent with all proper subgroups of finite exponent has the following properties: $(1)$ $G$ is an indecomposable $p$-group, $(2)$ if the derived subgroup $G'$ is non-perfect, then $G/G''$ is a group of Heineken-Mohamed type. We also prove that a non-perfect indecomposable group $G$ with the non-perfect locally nilpotent derived subgroup $G'$ is a locally finite $p$-group.
Keywords: locally finite group, finitely generated group, exponent, group of Heineken-Mohamed type.
@article{ADM_2015_19_1_a1,
     author = {Orest D. Artemovych},
     title = {On subgroups of finite exponent in groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a1/}
}
TY  - JOUR
AU  - Orest D. Artemovych
TI  - On subgroups of finite exponent in groups
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 1
EP  - 7
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a1/
LA  - en
ID  - ADM_2015_19_1_a1
ER  - 
%0 Journal Article
%A Orest D. Artemovych
%T On subgroups of finite exponent in groups
%J Algebra and discrete mathematics
%D 2015
%P 1-7
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a1/
%G en
%F ADM_2015_19_1_a1
Orest D. Artemovych. On subgroups of finite exponent in groups. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a1/

[1] A. Arikan, H. Smith, “On groups with all proper subgroups of finite index”, J. Group Theory, 14:5 (2011), 765–775 | DOI | MR | Zbl

[2] O. D. Artemovych, “On indecomposable metabelian groups”, Ukrainian Math. J., 42:9 (1998), 163–175 | MR

[3] G. Baumslag, “Wreath products and $p$-groups”, Proc. Cambridge Phil. Soc., 55 (1959), 224–231 | DOI | MR | Zbl

[4] B. Bruno, R. E. Phillips, “A note on groups with nilpotent-by-finite proper subgroups”, Archiv Math., 65 (1995), 369–374 | DOI | MR | Zbl

[5] G. Cutolo, H. Smith, J. Wiegold, “Groups covered by conjugates of proper subgroup”, J. Algebra, 293:1 (2005), 261–268 | DOI | MR | Zbl

[6] L. Fucks, Infinite abelian groups, v. I, Academic Press, New York London, 1970

[7] R. I. Grigorchuk, “On just infinte branch groups”, Horizonts in pro-$p$ Groups, eds. M. du Sautoy, D. Segal, A. Shalev, 121–179 | MR | Zbl

[8] H. Heineken, I. J. Mohamed, “A group with trivial centre satisfying the normalizer condition”, J. Algebra, 10:5 (1968), 368–376 | DOI | MR | Zbl

[9] O. H. Kegel, B. A. F. Wehrfritz, Locally finite group, North-Holland, 1973 | MR

[10] J. C. Lennox, S. E. Stonehever, Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1987, xiii+253 pp. | MR | Zbl

[11] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Text in Math., 80, Springer-Verlag, New York, 1993, xviii+481 pp. | MR

[12] D. J. S. Robinson, “A survey of groups in which normality or permutability is a transitive relation”, Algebra, ed. I. B. S. Passi, Hindustan Book Agency, 1999, 171–181 | MR

[13] J. S. Wilson, “On just infinte abstract and profinite groups”, Horizonts in pro-$p$ Groups, eds. M. du Sautoy, D. Segal, A. Shalev, 181–203 | MR | Zbl